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1. Definition of the model - Immigration

Let 0 < T1 < T2 < · · · denote random time-points
generated by a Poisson random measure (PMR)
Π(0, t) =

∑∞
i=1 1{Ti≤t}, t ≥ 0, with local intensity r(t) > 0

and mean measure R(t) =
∫ t

0 r(x)dx . Then,
P{Π(0, t) = k} = e−R(t)Rk (t)/k ! for k = 0,1....

Let Ik = (Ik1, . . . , Ikd ), k = 1,2 · · · , be i.i.d. non-negative
integer-valued random vectors with a multidimensional
p.g.f. g(s) = E{sIk} =

∑
α P{Ik = α}sα,

α = (α1, ..., αd ) ∈ Nd , s = (s1, ..., sd ), | s |≤ 1,
sα = ud

i=1sαi
i .

We consider the marked point process
{(Tk , Ik ), k = 1,2...}. The vector Ik is interpreted as the
number of immigrants that join the population at time Tk .
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2. Definition of the model - Branching

Define the multitype branching process
Z = {Zi(t) = (Zi1(t),Zi2(t), . . . ,Zid (t)), i = 1, ...,d ; t ≥ 0},
where Zij(t) denotes the number of type-j individuals (cells,
particles) at time t produced by a single type-i individual
born at t = 0, i , j= 1, . . . ,d , and assume that individuals
evolve independently of each other.

Let Fi(t ; s) =
∑

α∈Nd P{Zi(t) = α}sα, with Fi(0,s) = si , be
the corresponding multitype p.g.f. Define the vector
F(t ; s) = (F1(t ; s),F2(t ; s), . . . ,Fd (t ; s)).

Let Z̃ = {Z̃k (t) = (Z̃k1(t), ..., Z̃kd (t)); t ≥ 0; k = 1,2, . . .} be
i.i.d. copies of Z, but with initial conditions Z̃k (0) = Ik .
Therefore, E{sZ̃k (t)} = g(F(t ; s)) because of the
independence of the individual evolutions.

We assume that the sets Z̃ and {Π(0, t), t ≥ 0} are
independent.
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3. PRM and Branching Processes

Define the process

Y(t) =
∑Π(0,t)

k=1 Z̃k (t − Tk )1{Π(t)>0}, t ≥ 0, Y(0) = 0.

Its first increment occurs when the first batch of I1
immigrants enters the population at time T1, each of which
evolves in accordance with a process Z.

A second batch of I2 immigrants arrives at time T2, etc.

We refer to Y ={Y(t) = (Y1(t), ...,Yd (t)), t ≥ 0} as a
Multitype Branching Process with Non-Homogeneous
Poisson Immigration (MBPwNHPI).
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4. PRM and Branching Processes - Equation for PGF

Theorem A. The p.g.f.

Φ(t ; s) = E{sY(t)|Y(t) = 0}

satisfies the equation:

Φ(t ; s) = exp

{
−
∫ t

0
r(t − x)[1− g(F(x ; s))]dx

}
,Φ(0; s) = 1.

Remark. This formula is valid for a broad class of branching
processes in which individuals evolve independently of each
other. Such processes include multitype Markov,
Bellman-Harris, Sevastyanov or Crump-Mode-Jagers branching
models, which are described in various monographs: Harris
(1963), Sevastyanov 1971), Mode (1972), Athreya and Ney
(1972), Jagers (1975), and Asmussen and Hering (1983).
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5. PRM and Multitype Markov Branching Processes

We investigate the asymptotic behaviour of Y(t) when Z(t)
is a critical multitype Markov branching process and when
the intensity r(t) is a regularly varying function (r.v.f.), i.e.:

r(t) = L(t)tθ, where θ ∈ R and L(t) is a s.v .f . as t →∞.

Depending on the asymptotic rate of r(t) we study

asymptotic behaviour of first and second moments of Y(t);

convergence of its probabilities of non-extinction;

limiting distributions.
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6. History

The first branching process model with immigration was
introduced and investigated by Sevastyanov (1957) in the
single-type continuous-time Markov case and when the
times of immigration form an homogeneous Poisson
process.
Jagers (1968) generalized this model to Bellman-Harris
branching processes. The same setting was subsequently
investigated by Pakes (1972), Radcliffe (1972), Pakes and
Kaplan (1974).
Sevastyanov branching processes with homogeneous
Poisson immigration were considered by Yanev (1972).
Multitype Markov branching processes with homogeneous
Poisson immigration were considered by Polin (1977) and
Sagitov (1982), among others.
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7. Motivation - by Applications

Recently, single-type age-dependent branching processes with
immigration occurring according to an inhomogeneous Poisson
process have been considered to describe the evolution of cell
populations:

Yakovlev A.Y., Yanev N.M. Branching stochastic processes with
immigration in analysis of renewing cell populations// Math. Biosci.
2006. V. 203. P. 37-63.

Yanev N.M. Branching Processes in Cell Proliferation Kinetics. In: M.
Gonzalez et al. (Eds.), Workshop on Branching Processes and Their
Applications. LN in Statistics 197, 2010, 159-179.

Hyrien, O., Peslak, S.A., Yanev, N.M., Palis, J. (2015). Stochastic
modeling of stress erythropoiesis using a two-type age-dependent
branching process with immigration. J. Math. Biol.70:1485-1521

Hyrien O., Yanev N.M., Jordan C.T. (2015) A test of homogeneity for
age-dependent branching processes with immigration. Electronic J.
Statistics. Vol. 9, 898–925.

N. M. Yanev O. Hyrien K. V. Mitov PRM and MBP



8. Motivation - by Theory - 1

For many years, we have studied several, related classes of
branching processes with migration, independent immigration
and state-dependent immigration.

Yanev N. M. and Mitov K. V. Critical Branching Processes
with Nonhomogeneous Migration// Ann. Probab. 1985. V.
13(3). P. 923-933.
Mitov K.V., Vatutin V.A., Yanev N.M. Continuous-time
branching processes with decreasing state-dependent
immigration// Adv. Appl. Prob. 1984. V. 16. P. 697-714.
Mitov K.V., Yanev N.M. Bellman-Harris branching
processes with state-dependent immigration// J. Appl.
Prob. 1985. V. 22. P. 757-765.
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9. Motivation - by Theory - 2

Single-type Sevastyanov branching processes with immigration
arising from Poisson random measures were investigated in the
following papers:

Mitov K.V., Yanev N. M. (2013) Sevastyanov branching
processes with non-homogeneous Poisson immigration.
Proceedings of Steklov Mathematical Institute, V. 282,
181-194
Hyrien, O., Mitov K. M. , Yanev N. M. (2016). Supercritical
Sevastyanov branching processes with non-homogeneous
Poisson immigration. Eds. I.M. del Puerto, et al.,
“Branching Processes and their Applications”, Lecture
Notes in Statistics, vol. 219, 151–166, Springer, New York.
Hyrien, O., Mitov K. M. , Yanev N. M. (2017) Subcritical
Sevastyanov branching processes with non-homogeneous
Poisson immigration. J. Appl. Prob. 54, 569-587.
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10. Multitype Markov branching processes with
non-homogeneous Poisson immigration

From now on, we assume that the lifespan τi and the
offspring vector νi are independent, Gi(t) = 1− e−t/µi , and
hi(s) = Esν i =

∑
α∈Nd piαsα, i = 1,2, . . . ,d , which implies

that Z is a multitype Markov branching process, and

∂

∂t
F(t ; s) = f(F(t ; s)),

∂

∂t
F(t ; s) =

d∑
i=1

fi(s)
∂

∂si
F(t ; s),F(0; s) = s

where fi(s) = [hi(s)− si ]/ µi are infinitesimal g.f. and
f(s) = (f1(s), f2(s), . . . , fd (s)).

Under these assumptions, Y(t) is a multitype Markov
branching processes with non-homogeneous Poisson
immigration (MMBPwNHPI).
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11. Multitype Markov Branching Processes - Notation

Let Aij(t) = E{Zij(t)} = ∂Fi (t ;s)
∂sj

∣∣∣
s=1

,1 ≤ i , j , k ≤ d ,

Bi
jk (t) = E{Zij(t)(Zik (t)− δjk )} = ∂2Fi (t ;s)

∂sj∂sk

∣∣∣
s=1

.

Introduce the matrix of first infinitesimal characteristics
a = ‖aij‖ where aij = ∂fi (s)

∂sj

∣∣∣
s=1

, and the second factorial

infinitesimal characteristics bi
jk = ∂2fi (s)

∂sj∂sk

∣∣∣
s=1

, 1 ≤ i , j , k ≤ d .

Then, A(t) = ‖Aij(t)‖ = exp{at} =
∑∞

n=0
antn

n! .
Assume that a is an irreducible matrix. Write ρ for its
Perron-Frobenius root. The associated right and left
eigenvectors u = (u1, . . . ,ud ) and v = (v1, . . . , vd ) can be
chosen positive, with u1 > 0 and v1 > 0, and normalized such
that

∑d
i=1 ui = 1 and

∑d
i=1 uivi = 1.

Define mi = ∂g(s)
∂si

∣∣∣
s=1

, βij = ∂2g(s)
∂si∂sj

∣∣∣
s=1

- the first and the
second factorial moments of the immigration component.
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12. MMBPwNHPI - Equations for moments

Put Mi(t) = EYi(t) and Cij(t) = Cov{Yi(t),Yj(t)},
1 ≤ i , j ≤ d , where Vk (t) = Ckk (t) = VarYk (t), k = 1, ...,d .
Then,

Mi(t) =
∂ log Φ(t ; s)

∂si

∣∣∣∣
s=1

=
d∑

k=1

mk

∫ t

0
r(t − x)Aki(x)dx ,

Cij(t) =
∂2 log Φ(t ; s)

∂si∂sj

∣∣∣∣
s=1

= b
d∑

k=1

mk

∫ t

0
r(t − x)Bk

ij (x)dx

+
d∑

k=1

d∑
l=1

βkl

∫ t

0
r(t − x)Aki(x)Alj(x)dx ,

where b =
∑

i,j,k vibi
jkujuk .
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13. MMBPwNHPI - Basic assumptions

The local characteristics of reproduction {aij , bi
jk} and of

immigration {mi , βij} are finite

The Markov process Z is irreducible and critical, i.e. the
Perron-Frobenius root ρ = 0.

We investigate the asymptotic behaviour of Y(t) when the
local intensity of the PRM, r(t) = L(t)tθ, θ ∈ R, is a r.v.f.
bounded on the finite intervals and L(t) is a s.v.f. as t →∞.
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14. MMBPwNHPI - Means, variances, covariances
and correlations

Theorem (1)
Under the Basic assumptions, and as t →∞:
Mi(t) ∼ CviR(t), C =

∑d
k=1 mkuk , 1 ≤ i ≤ d ,

Cij(t) ∼ bCvivj
∫ t

0 R(x)dx , 1 ≤ i , j ≤ d , t →∞.

Corollary 1. If ρij(t) = Cor{Yi(t),Yj(t)}, i 6= j ,1 ≤ i , j ≤ d , are
the correlation coefficients then lim

t→∞
ρij(t) = 1.

Remark 1:

If θ = 0 then R(t) is a s.v.f. If additionally R(t)→ R <∞,
then Cij(t) ∼ bCvivjRt (similar to the process without
immigration).
If R(t) = Rt (homogeneous Poisson immigration), then
Cij(t) ∼ (b/2)CvivjRt2. This result was first proven by
Sevastyanov (1957) in the single-type case.
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15. MMBPwNHPI - Probabilities of non-extinction

Theorem 2. Let W (t) = P{Y(t) 6= 0} and assume Basic
conditions with r(t) = L(t)tθ, θ ∈ R (in the cases (i)-(iv)).
(i) If θ > 0 or θ = 0 but L(t) log t →∞, then limt→∞W (t) = 1.
(ii) If θ = 0 and additionally (2C/b)L(t) log t → κ ∈ (0,∞), then
limt→∞W (t) = 1− e−κ ∈ (0,1).
(iii) If θ ∈ (−1,0) or θ = 0 but L(t) log t → 0, then
W (t) ∼ (2C/b)tθL(t) log t → 0, t →∞.
(iv) If θ = −1, then W (t) ∼ (2C/b)L1(t)t−1 → 0, t →∞,
where L1(t) is a s.v.f. and L1(t) = L(t) log t +

∫ t
0 L(x)x−1dx .

(v) If R =
∫∞

0 r(x)dx <∞ and r(t) = o([t log t ]−1) as t →∞,
then W (t) ∼ (2CR/bt).
Remark 2. In fact, W (t)→ 1 if r(t) log t →∞,
W (t)→W ∗ ∈ (0,1) if r(t) log t → C∗ ∈ (0,∞) and W (t)→ 0 if
r(t) log t → 0 (cases (iii)-(v)).
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16. MMBPwNHPI - Limiting distributions - LLN

Theorem 3. Assume Basic conditions (r(t) = L(t)tθ, θ ∈ R).
Let ηk (t) = Yk (t)/EYk (t), k = 1,2, . . . ,d .
(i) If θ > 0 or θ = 0 with L(t)→∞ as t →∞, then
ηk (t)→ 1 in probability (Law of Large Numbers);
(ii) If θ > 1 or θ = 1 with

∫∞
0 [xL(x)]−1dx <∞, then

ηk (t)→ 1 a.s. (Strong LLN).
Remark 3. Note that by Theorem 2 in this cases
limt→∞ P{Y(t) 6= 0} = 1.
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17. MMBPwNHPI - Limiting distributions - CLT

We will use the following notation for the limiting distributions:
D(x) = P{ξ1 ≤ x1, . . . , ξd ≤ xd},x = (x1, . . . , xd ), where
ξ1 = . . . = ξd a.s. In fact, D(x) = P{ξ1 ≤ min(x1, ..., xd )}.
———————————————————————————-
Theorem 4 (CLT). Assume Basic conditions (r(t) = L(t)tθ,
θ ∈ R). Let X(t) = (X1(t), . . . ,Xd (t)), where
Xk (t) = [Yk (t)− EYk (t)]/

√
VarYk (t) for every k = 1,2, . . . ,d .

If θ > 0 or θ = 0 with L(t)→∞ as t →∞, then
limt→∞ P{X(t) ≤ x} = D(x), where ξ1 ∈ N(0,1).
Corollary 2. From Theorem 4 and Theorem 1 one obtains the
following asymptotic normality as t →∞

Yk (t)
Cvk (θ + 1)−1L(t)tθ+1 ∼ N

(
1,

b(θ + 1)

C(θ + 2)L(t)tθ

)
, k = 1, . . . ,d .

In the case θ = 0 we have Yk (t)/CvkL(t)t ∼ N (1,b/CL(t)) .
.
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18. Limiting distributions - Theorem 5: r(t)=L(t) - s.v.f.

Theorem 5. Assume Basic conditions with θ = 0 and
r(t) = L(t) − s.v .f . as t →∞.
(i) If L(t)→ r∗ ∈ (0,∞) as t →∞, then

lim
t→∞

P{Y1(t)v−1
1 /(r∗t) ≤ x1, . . . ,Yd (t)v−1

d /(r∗t) ≤ xd} = D(x),

where
P{ξ1 ≤ x1} = [βαΓ(α)]−1 ∫ x1

0 yα−1e−y/βdy , x1 ≥ 0,
α = 2C/b and β = b/2r∗;
(ii) If L(t)→ 0 but L(t) log t →∞ as t →∞, then

P
{
−2CL(t)

b log
2Y1(t)v−1

1
bt ≤ x1, . . . ,−2CL(t)

b log
2Yd (t)v−1

d
bt ≤ xd

}
→

→ D(x),
where P{ξ1 ≤ x1} = 1− e−x1 , x1 ≥ 0.
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19. Theorem 5 continues: r(t)=L(t) - s.v.f.

(iii) If (2C/b)L(t) log t → κ ∈ (0,∞) as t →∞, then:
(1) Unconditional limiting distribution

P
{

log[Y1(t)v−1
1 ]

log t ≤ x1, . . . ,
log[Yd (t)v−1

d ]

log t ≤ xd

}
→ D(x),

where E1(x1) = P{ξ1 ≤ x1} = e−κ(1−x1), 0 ≤ x1 ≤ 1;
(2) Conditional limiting distribution

P
{

1− log[Y1(t)v−1
1 ]

log t ≤ x1, . . . ,1−
log[Yd (t)v−1

d ]

log t ≤ xd |Y(t) 6= 0
}
→

→ D(x),
where E2(x1) = P{ξ1 ≤ x1} = (1− e−κx1)/(1− e−κ),
0 ≤ x1 ≤ 1.
Remark 4. Remember that by Theorem 2
limt→∞ P{Y(t) 6= 0) = 1− e−κ ∈ (0,1) in the case (iii), while in
the cases (i) and (ii) limt→∞ P{Y(t) 6= 0) = 1.
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20. MMBPwNHPI - Limiting distributions - Theorem 6

Theorem 6. Assume Basic conditions (r(t) = L(t)tθ, θ ∈ R). If
θ ∈ (−1,0) or θ = 0 with L(t) = o(1/ log t) then as t →∞

P

{
log[Y1(t)v−1

1 ]

log t
≤ x1, . . . ,

log[Yd (t)v−1
d ]

log t
≤ xd |Y(t) 6= 0

}
→ D(x),

where ξ1 ∈ U(0,1).
Remark 5. Recall that by Theorem 2 in this case
P{Y(t) 6= 0) ∼ (2C/b)tθL(t) log t → 0, t →∞.
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21. Limiting distributions - Theorem 7

Theorem 7. Assume Basic conditions with θ = −1, i.e.
r(t) = L(t)t−1. Let L̃(t) =

∫ t
0(L(x)/x)dx and L̂(t) = L(t) log t .

If L̃(t)/L̂(t)→ q ∈ (0,∞) as t →∞, then

P
{

log[Y1(t)v−1
1 ]

log t ≤ x1, . . . ,
log[Yd (t)v−1

d ]

log t ≤ xd |Y(t) 6= 0
}
→ D(x),

where H1(x1) = P(ξ1 ≤ x1) = x1
1+q 1{0≤y≤1} + 1

1+q 1{x1≥1} and

P
{

2Y1(t)v−1
1

bt ≤ x1, . . . ,
2Yd (t)v−1

d
bt ≤ xd |Y(t) 6= 0

}
→ D(x),

where H2(x1) = P{ξ1 ≤ x1} = 1
1+q + q

1+q (1− e−x1), x1 ≥ 0.
Remark 6. We obtain with different normalizations two singular
limiting distributions. The non-extinction sample paths can be
separated in two groups with distinct growth patterns: (i) with
probability 1

1+q the growth is parabolic with a power that follows
a uniform distribution on the unit interval; (ii) with probability

q
1+q the growth is linear with an exponentially distributed slope.
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22. Limiting distributions - Theorem 7 - Remark 7

Remark 7. If L̃(t) =
∫ t

0(L(x)/x)dx ∼ L(t) log t = L̂(t) then q = 1
(for example, if limt→∞ L(t) = K ∈ (0,∞)).
If L(t) = (log t)α then L̂(t) = (log t)α+1, but
L̃(t) =

∫ t
K x−1(log x)αdx = (α + 1)−1[(log t)α+1 − (log K )α+1] for

α 6= −1 and L̃(t) ∼ log log t for α = −1. Hence, q = 1/(α + 1) if
α > −1, q =∞ if α = −1, and q = 0 if α < −1. In the case
α < −1 the marginal distributions are uniformly distributed on
the unit interval H1(x1) = x1 ∈ (0,1), whereas in the case
α = −1 we have exponential distributions
H2(x1) = 1− e−x1 , x1 ≥ 0.
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23. MMBPwNHPI - Limiting distributions - Theorem 8

Theorem 8. If R =
∫∞

0 r(x)dx <∞ and r(t) = o([t log t ]−1),
then as t →∞,

P{2Y1(t)v−1
1 /bt ≤ x1, . . . ,2Yd (t)v−1

d /bt) ≤ xd |Y(t) 6= 0} → D(x),

where P{ξ1 ≤ x} = 1− e−x , x ≥ 0.
Remark 8. The obtained limiting distribution is similar to that
established for the Markov branching process without
immigration. Recall that by Theorem 2 we have
P{Y(t) 6= 0} ∼ (2CR/bt , t →∞.
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24. Concluding remarks

One can interpret the local intensity r(t) as a control function,
the asymptotic behaviour of which determines different types of
limiting results.
For example, some conditions are shown under which the
obtained limiting results for critical MMBPwNHPI are similar to
those proved for Markov branching processes without
immigration, or on the other hand, similar to the processes with
homogeneous Poisson immigration. New effects are discovered
due to inhomogeneity: LLN and CLT, and new conditional or
unconditional limiting distributions are also obtained.
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25. Open problems

To investigate the asymptotic behaviour of MMBPwNHPI in the
subcritical and supercritical cases.
To investigate Multitype age-dependent BP arising by Poisson
random measures.
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THANK YOU FOR YOUR ATTENTION!

————————————
BRANCHING FOREVER!
————————————
The slogan of the First World Congress of Branching
Processes, Varna, Bulgaria, 1993. Only 25 years ago!
———————————-
C. C. Heyde (Editor). Branching Processes. Proceedings of the
First Word Congress. Lecture Notes in Statistics, V. 99, 1995,
Springer, New York.
———————————-
THANK YOU VERY MUCH TO THE ORGANIZERS FOR THIS
VERY ATTRACTIVE REALLY WORLD WORKSHOP!
———————————
Proposition: The next Workshop to be the Second World
Congress of Branching Processes!
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