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Notation:

Let {Z(n), n ≥ 0} be a Galton-Watson branching process with Z(0) = 1;

f(s) = Esξ =
∞∑
k=0

fks
k

be the offspring generating function of the process;

Z(m,n) be the number of particles in the process at moment m ≤ n
having a positive number of descendants at moment n.

The process {Z(m,n), 0 ≤ m ≤ n} is called a reduced process.



Genealogical tree for a branching process



Genealogical tree for the respective reduced process



Fleischmann and Prehn (1974) - the subcritical reduced processes.

Zubkov (1975) - the distance to the most recent common ancestor
(MRCA) for the supercritical Galton–Watson processes and for the critical
processes with possibly infinite variance of the offspring size.

Fleischmann and Siegmund-Schultze (1977) - a functional conditional
limit theorem on the convergence of the reduced critical Galton–Watson
branching process to the Yule processes.



Different questions related to the problem of the distribution of the MRCA
for the k particles selected at random among the Z(n) ≥ k particles
existing in the population at moment n were considered, for instance, by
K.Athreya, O’Connell, Durrett, Lambert, S.C. Harris, Johnston, Roberts,
Moelle, Sagitov.
Properties of the GW processes given that the total amount of particles in
the process is fixed or belongs to some sets were considered by Dwass,
Kolchin... and many others, including Abraham and Delmas.



Abraham and Delmas (2014): the structure of the tree given that the number
of particles in generation n is fixed.

A Kesten tree T ∗ is an infinite random tree with vertices labeled by tuples
V1V2 · · · Vn, n ∈ N (the size-biased tree) whose distribution is as follows.

There exists a unique infinite random sequence (Vl; l ∈ N) of positive
integers such that, for every h ∈ N, V1V2 · · · Vh ∈ T ∗ , with the
convention that V1V2 · · · Vh = � if h = 0.



The joint distribution of (Vl; l ∈ N) and T ∗ is determined recursively as follows:

for each h ∈ N, given V1V2 · · · Vh and T ∗h (restriction of T ∗ to the first h
generations) we have:

The number of children of all particles of generation h are independent
and distributed according to

f(s) = Esξ =
∞∑
j=0

fjs
j

if V1V2 · · · Vh /∈ T ∗ and according to

f ′(s) = E
[
ξsξ−1

]
if V1V2 · · · Vh ∈ T ∗.
Given also the total number Mh of children of all particles of the h−th
generation, the integer Vh+1 is uniformly distributed on the set of integers
1, 2, ...,Mh.



Let T be the genealogical tree of an ordinary GW process.

Theorem

Assume that f0 + f1 < 1 and Eξ = 1. Let {αn, n = 1, 2, ...} be a sequence of
positive integers tending to infinity such that, for any j = 0, 1, ...

lim
n→∞

P (Z(n− j) = αn)

P (Z(n) = αn)
= 1.

Then
L (T |Z(n) = αn)→ L (T ∗) .



Our result is, in a sense a commentary to this paper and to the results due to
Fleischmann+Prehn and Zubkov and concerns the reduced trees.
We know that if

Eξ = 1, 2B := V arξ ∈ (0,∞) ,

then
Q(n) := P (Z(n) > 0) ∼ 1

Bn
as n→∞

and, for any y ≥ 0

lim
n→∞

P

(
Z(n)

Bn
≤ y|Z(n) > 0

)
= 1− e−y.

In addition (Fleischmann+Prehn), for any fixed t ∈ [0, 1) and all s ∈ [0, 1]

lim
n→∞

E
[
sZ(nt,n)|Z(n) > 0

]
= s

1− t
1− ts .



We study the asymptotic properties of the reduced process when the condition
{Z(n) > 0} is replaced either

by the assumption that {0 < Z(n) ≤ Bϕ(n)} for a function ϕ(n) = o(n)
as n→∞
or by the assumption that {0 < Z(n) ≤ aBn} for some a > 0.



Theorem

If g.c.d.{k : fk > 0} = 1,

Eξ = 1, 2B := V arξ ∈ (0,∞) ,

and ϕ(n)→∞ in such a way that ϕ(n) = o(n), then for any x ∈ (0,∞)

lim
n→∞

E
[
sZ(n−xϕ(n),n)

∣∣0 < Z(n) ≤ Bϕ(n)
]

= sx
1− e−(1−s)/x

1− s .



Let
β(n) := max (0 ≤ m < n : Z(m,n) = 1)

be the birth moment of the MRCA of all particles existing in the population at
moment n and let d(n) := n− β(n) be the distance from the point of
observation n to the birth moment of the MRCA.

Corollary

Under the basic conditions

lim
n→∞

P (d(n) ≤ xϕ(n)|0 < Z(n) ≤ Bϕ(n)) = x
(
1− e−1/x

)
.



Proof of the corollary. Let

H(n) := {0 < Z(n) ≤ Bϕ(n)} .

Then

lim
n→∞

P (d(n) ≤ xϕ(n)|H(n))

= lim
n→∞

P (Z(n− xϕ(n), n) = 1|H(n))

= coeffs

[
sx

1− e−(1−s)/x

1− s

]
= x

(
1− e−1/x

)
.

Note that

lim
x→∞

x
(
1− e−1/x

)
= 1 and lim

x→0
x
(
1− e−1/x

)
= 0.



Theorem

If g.c.d.{k : fk > 0} = 1 and the basic conditions are valid, then, for any fixed
t ∈ [0, 1) and any a > 0

lim
n→∞

E
[
sZ(nt,n)

∣∣0 < Z(n) ≤ aBn
]

= s
1− t
1− ts

1− e−(1−ts)a/(1−t)

1− e−a .

Corollary

Under the basic conditions

lim
n→∞

P (d(n) ≤ nt|0 < Z(n) ≤ aBn) = t
1− e−a/t

1− e−a .

Observe that (Zubkov), for 0 < t < 1

lim
n→∞

P (d(n) ≤ nt|0 < Z(n)) = t.



Proof of the corollary
As before:

lim
n→∞

P (d(n) ≤ tn|0 < Z(n) ≤ aBn)

= lim
n→∞

P (Z(n(1− t), n) = 1|0 < Z(n) ≤ aBn)

= coeffs

[
s

t

1− (1− t) s
1− e−(1−(1−t)s)a/t

1− e−a

]
= t

1− e−a/t

1− e−a .



Basic tool:
Let

H(n) := {0 < Z(n) ≤ Bϕ(n)} .

We have

P (Z(n− xϕ(n), n) = j|H(n))

=
P (Z(n− xϕ(n), n) = j)×P (H(n)|Z(n− xϕ(n), n) = j)

P (H(n))
.



Nagaev, Wachtel (2006): if the basic conditions are valid and k, n→∞ in
such a way that the ratio k/n remains bounded then

lim
n→∞

n2B2

(
1 +

1

Bn

)k+1

P (Z(n) = k|Z(0) = 1) = 1.

Therefore, given k/n→ 0

P (H(n)|Z(0) = 1) =
∑

1≤k≤Bϕ(n)

P (Z(n) = k|Z(0) = 1)

∼ 1

n2B2

∑
1≤k≤Bϕ(n)

1 ∼ ϕ(n)

n2B
.



Denote fn(s) the nth iteration of f(s) with itself. Then

P (Z(n− xφ(n), n) = j) =

∞∑
k=j

P (Z(n− xφ(n)) = k;Z(n− xφ(n), n) = j)

=

∞∑
k=j

P (Z(n− xφ(n)) = k)Cjkf
k−j
xφ(n)(0)

(
1− fxφ(n)(0)

)j
=

(
1− fxφ(n)(0)

)j
j!

f
(j)

n−xφ(n)(fxφ(n)(0)).



Now
lim
n→∞

n2 [fn+1(0)− fn(0)] =
1

B
.

We consider for λ > 0 the function

fm(fλxϕ(n)(0)) = fm(eλ log fxϕ(n)(0))

and find r such that

1− fr+1(0) < 1− fλxϕ(n)(0) ≤ 1− fr(0).

We know that

1− fλxϕ(n)(0) ∼ λ
(
1− fxϕ(n)(0)

)
∼ λ

Bxϕ(n)
.

Hence we get

r ∼ xϕ(n)

λ
= o(n) as n→∞.



Hence we get

r ∼ xϕ(n)

λ
= o(n) as n→∞.

Then for n−m = xϕ(n)

lim
n→∞

n2

xϕ(n)
[fm(fr(0))− fm(0)]

= lim
n→∞

1

xϕ(n)

r−1∑
k=0

n2 [fm(fk+1(0))− fm(fk(0))]

= lim
n→∞

1

xϕ(n)

r−1∑
k=0

n2

(m+ k)2
(m+ k)2 [fm+k+1(0)− fm+k(0)]

=
1

B
lim
n→∞

1

xϕ(n)

r−1∑
k=0

1 =
1

B

1

λ
.



Thus,

lim
n→∞

n2

xϕ(n)

[
fm(eλ log fxϕ(n)(0))− fm(0)

]
=

1

B

1

λ
, λ > 0.

Clearly, the prelimiting and limiting functions are analytical in the complex
semi-plane Re λ > 0.

Therefore, the derivatives of any order of the prelimiting functions converge to
the respective derivatives of the limiting function for each λ with Re λ > 0.

Thus, for each j ≥ 1

lim
n→∞

Bn2

xϕ(n)

dj

dλj

[
fm(eλ log fxϕ(n)(0))

]
= (−1)j

j!

λj+1
.



Set Ij := i1 + · · ·+ ij and

D(j) := {(i1, ..., ij) : 1 · i1 + 2 · i2 + · · ·+ jij = j} ,

By Faà di Bruno’s formula we have

dj

dλj

[
fm(eλ log fxϕ(n)(0))

]
=

∑
D(j)

j!

i1! · · · ij !
f

(Ij)
m (eλ log fxϕ(n)(0))

j∏
r=1

((
eλ log fxϕ(n)(0)

r!

)(r)
)ir

=
∑
D(j)

j!

i1! · · · ij !
f

(Ij)
m (eλ log fxϕ(n)(0))eλIj log fxϕ(n)(0)

j∏
r=1

(
log fxϕ(n)(0)

)
(r!)ir

rir

=
(
log fxϕ(n)(0)

)j ∑
D(j)

j!

i1! · · · ij !
f

(Ij)
m (eλ log fxϕ(n)(0))eλIj log fxϕ(n)(0)

j∏
r=1

(
1

r!

)ir
.



One can show by induction for m = n− xϕ(n) that

(−1)j j! ∼ Bn2

xϕ(n)

dj

dλj

[
fm(eλ log fxϕ(n)(0))

]
|λ=1

∼ (−1)j
∑
D(j)

j!

i1!i2! · · · ij !
B2n2

(Bxϕ(n))j+1
f

(Ij)
m (fxϕ(n)(0))

j∏
r=1

1

(r!)ir

∼ (−1)j
j!

j!0! · · · 0!

B2n2

(Bxϕ(n))j+1
f (j)
m (fxϕ(n)(0))

= (−1)j
B2n2

(Bxϕ(n))j+1
f (j)
m (fxϕ(n)(0)).



This representation and previous results give

P (Z(n− xϕ(n), n) = j) =

(
1− fxϕ(n)(0)

)j
j!

f
(j)

n−xϕ(n)

(
fxϕ(n)(0)

)
∼ 1

j! (xBϕ(n))j
j! (xBϕ(n))j+1

B2n2
∼ xϕ(n)

Bn2
.



Let now Z∗1 (m), . . . , Z∗j (m) be i.i.d. random variables distributed as
{Z(m)|Z(m) > 0} , and let η1, . . . , ηj be i.i.d. random variables having
exponential distribution with parameter 1. Then

lim
n→∞

P (0 < Z(n) ≤ Bφ(n)|Z(n− xϕ(n), n) = j)

= lim
n→∞

P
(
Z∗1 (xϕ(n)) + · · ·+ Z∗j (xϕ(n)) ≤ Bϕ(n)

)
= lim

n→∞
P

(
Z∗1 (xϕ(n))

Bxϕ(n)
+ · · ·+

Z∗j (xϕ(n))

Bxϕ(n)
≤ 1

x

)
= P

(
η1 + · · ·+ ηj ≤

1

x

)
=

1

(j − 1)!

∫ 1/x

0

zj−1e−zdz.



As a result

lim
n→∞

E
[
sZ(n−xϕ(n),n)|H(n)

]
=

∞∑
j=1

lim
n→∞

P (Z(n− xϕ(n), n) = j|H(n))sj

=

∞∑
j=1

x

(j − 1)!

∫ 1/x

0

sjzj−1e−zdz

= xs

∫ 1/x

0

e(s−1)zdz =
xs

1− s

(
1− e−(1−s)/x

)
.



Generalizations:

infinite variance for the offspring number??? :

there is NO local limit theorem for Z(n) = j for large j (!)

Age-dependent processes, that is the processes with G(t) = P (τ ≤ t)
being the life-length distribution of the particles of the process and
µ = Eτ .



It is known (V., 1976, 1979) that if Eξ = 1, 2B := V arξ ∈ (0,∞) , and

1−G(t) = P (τ > t) ∼ C

tγ

then, for γ ∈ (0, 2)

lim
t→∞

E
[
sZ(t)|Z(t) > 0

]
= 1−

√
1− s,

for γ > 2

lim
t→∞

P
( µ
Bt
Z(t) ≤ x |Z(t) > 0

)
= 1− e−x,



If γ = 2 then
a) for all s ∈ [0, 1)

lim
t→∞

E
[
sZ(t)|Z(t) > 0

]
= 1−

µ+
√
µ2 + 4C(1− s)

µ+
√
µ2 + 4C

;

b) for any x > 0

lim
t→∞

P
( µ
Bt
Z(t) ≤ x |Z(t) > 0

)
= 1− r + r(1− e−x).

with
r =

2µ

µ+
√
µ2 + 4C

.
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