Reduced critical processes for small populations

Vladimir Vatutin (Steklov Mathematical Institute)
Minzhi Liu (Bejing Normal University)

Badajoz, April, 2018

Notation:

- Let $\{Z(n), n \geq 0\}$ be a Galton-Watson branching process with $Z(0)=1$;
-

$$
f(s)=\mathbf{E} s^{\xi}=\sum_{k=0}^{\infty} f_{k} s^{k}
$$

be the offspring generating function of the process;

- $Z(m, n)$ be the number of particles in the process at moment $m \leq n$ having a positive number of descendants at moment n.
- The process $\{Z(m, n), 0 \leq m \leq n\}$ is called a reduced process.

Genealogical tree for a branching process
r

Full! Tree

Genealogical tree for the respective reduced process

- Fleischmann and Prehn (1974) - the subcritical reduced processes.
- Zubkov (1975) - the distance to the most recent common ancestor (MRCA) for the supercritical Galton-Watson processes and for the critical processes with possibly infinite variance of the offspring size.
- Fleischmann and Siegmund-Schultze (1977) - a functional conditional limit theorem on the convergence of the reduced critical Galton-Watson branching process to the Yule processes.
- Different questions related to the problem of the distribution of the MRCA for the k particles selected at random among the $Z(n) \geq k$ particles existing in the population at moment n were considered, for instance, by K.Athreya, O'Connell, Durrett, Lambert, S.C. Harris, Johnston, Roberts, Moelle, Sagitov.
- Properties of the GW processes given that the total amount of particles in the process is fixed or belongs to some sets were considered by Dwass, Kolchin... and many others, including Abraham and Delmas.

Abraham and Delmas (2014): the structure of the tree given that the number of particles in generation n is fixed.

- A Kesten tree \mathcal{T}^{*} is an infinite random tree with vertices labeled by tuples $V_{1} V_{2} \cdots V_{n}, n \in \mathbb{N}$ (the size-biased tree) whose distribution is as follows.
- There exists a unique infinite random sequence $\left(V_{l} ; l \in \mathbb{N}\right)$ of positive integers such that, for every $h \in \mathbb{N}, V_{1} V_{2} \cdots V_{h} \in \mathcal{T}^{*}$, with the convention that $V_{1} V_{2} \cdots V_{h}=\oslash$ if $h=0$.

The joint distribution of $\left(V_{l} ; l \in \mathbb{N}\right)$ and \mathcal{T}^{*} is determined recursively as follows:

- for each $h \in \mathbb{N}$, given $V_{1} V_{2} \cdots V_{h}$ and \mathcal{T}_{h}^{*} (restriction of \mathcal{T}^{*} to the first h generations) we have:
- The number of children of all particles of generation h are independent and distributed according to

$$
f(s)=\mathbf{E} s^{\xi}=\sum_{j=0}^{\infty} f_{j} s^{j}
$$

if $V_{1} V_{2} \cdots V_{h} \notin \mathcal{T}^{*}$ and according to

$$
f^{\prime}(s)=\mathbf{E}\left[\xi s^{\xi-1}\right]
$$

if $V_{1} V_{2} \cdots V_{h} \in \mathcal{T}^{*}$.

- Given also the total number M_{h} of children of all particles of the h-th generation, the integer V_{h+1} is uniformly distributed on the set of integers $1,2, \ldots, M_{h}$.

Let \mathcal{T} be the genealogical tree of an ordinary GW process.

Theorem

Assume that $f_{0}+f_{1}<1$ and $\mathbf{E} \xi=1$. Let $\left\{\alpha_{n}, n=1,2, \ldots\right\}$ be a sequence of positive integers tending to infinity such that, for any $j=0,1, \ldots$

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{P}\left(Z(n-j)=\alpha_{n}\right)}{\mathbf{P}\left(Z(n)=\alpha_{n}\right)}=1
$$

Then

$$
\mathcal{L}\left(\mathcal{T} \mid Z(n)=\alpha_{n}\right) \rightarrow \mathcal{L}\left(\mathcal{T}^{*}\right)
$$

Our result is, in a sense a commentary to this paper and to the results due to Fleischmann+Prehn and Zubkov and concerns the reduced trees.
We know that if

$$
\mathbf{E} \xi=1, \quad 2 B:=\operatorname{Var} \xi \in(0, \infty)
$$

then

$$
Q(n):=\mathbf{P}(Z(n)>0) \sim \frac{1}{B n} \quad \text { as } \quad n \rightarrow \infty
$$

and, for any $y \geq 0$

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left.\frac{Z(n)}{B n} \leq y \right\rvert\, Z(n)>0\right)=1-e^{-y}
$$

In addition (Fleischmann+Prehn), for any fixed $t \in[0,1)$ and all $s \in[0,1]$

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n t, n)} \mid Z(n)>0\right]=s \frac{1-t}{1-t s}
$$

We study the asymptotic properties of the reduced process when the condition $\{Z(n)>0\}$ is replaced either

- by the assumption that $\{0<Z(n) \leq B \varphi(n)\}$ for a function $\varphi(n)=o(n)$ as $n \rightarrow \infty$
- or by the assumption that $\{0<Z(n) \leq a B n\}$ for some $a>0$.

Theorem

If g.c.d. $\left\{k: f_{k}>0\right\}=1$,

$$
\mathbf{E} \xi=1, \quad 2 B:=\operatorname{Var} \xi \in(0, \infty)
$$

and $\varphi(n) \rightarrow \infty$ in such a way that $\varphi(n)=o(n)$, then for any $x \in(0, \infty)$

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n-x \varphi(n), n)} \mid 0<Z(n) \leq B \varphi(n)\right]=s x \frac{1-e^{-(1-s) / x}}{1-s}
$$

Let

$$
\beta(n):=\max (0 \leq m<n: Z(m, n)=1)
$$

be the birth moment of the MRCA of all particles existing in the population at moment n and let $d(n):=n-\beta(n)$ be the distance from the point of observation n to the birth moment of the MRCA.

Corollary

Under the basic conditions

$$
\lim _{n \rightarrow \infty} \mathbf{P}(d(n) \leq x \varphi(n) \mid 0<Z(n) \leq B \varphi(n))=x\left(1-e^{-1 / x}\right)
$$

Proof of the corollary. Let

$$
\mathcal{H}(n):=\{0<Z(n) \leq B \varphi(n)\}
$$

Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbf{P}(d(n) \leq x \varphi(n) \mid \mathcal{H}(n)) \\
& \quad=\lim _{n \rightarrow \infty} \mathbf{P}(Z(n-x \varphi(n), n)=1 \mid \mathcal{H}(n)) \\
& \quad=\operatorname{coeff}_{s}\left[s x \frac{1-e^{-(1-s) / x}}{1-s}\right]=x\left(1-e^{-1 / x}\right)
\end{aligned}
$$

Note that

$$
\lim _{x \rightarrow \infty} x\left(1-e^{-1 / x}\right)=1 \text { and } \lim _{x \rightarrow 0} x\left(1-e^{-1 / x}\right)=0
$$

Theorem

If g.c.d. $\left\{k: f_{k}>0\right\}=1$ and the basic conditions are valid, then, for any fixed $t \in[0,1)$ and any $a>0$

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n t, n)} \mid 0<Z(n) \leq a B n\right]=s \frac{1-t}{1-t s} \frac{1-e^{-(1-t s) a /(1-t)}}{1-e^{-a}} .
$$

Corollary

Under the basic conditions

$$
\lim _{n \rightarrow \infty} \mathbf{P}(d(n) \leq n t \mid 0<Z(n) \leq a B n)=t \frac{1-e^{-a / t}}{1-e^{-a}}
$$

Observe that (Zubkov), for $0<t<1$

$$
\lim _{n \rightarrow \infty} \mathbf{P}(d(n) \leq n t \mid 0<Z(n))=t .
$$

Proof of the corollary

As before:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbf{P}(d(n) \leq t n \mid 0<Z(n) \leq a B n) \\
& =\lim _{n \rightarrow \infty} \mathbf{P}(Z(n(1-t), n)=1 \mid 0<Z(n) \leq a B n) \\
& \quad=\operatorname{coeff} f_{s}\left[s \frac{t}{1-(1-t) s} \frac{1-e^{-(1-(1-t) s) a / t}}{1-e^{-a}}\right]=t \frac{1-e^{-a / t}}{1-e^{-a}}
\end{aligned}
$$

Basic tool:
Let

$$
\mathcal{H}(n):=\{0<Z(n) \leq B \varphi(n)\}
$$

We have

$$
\begin{aligned}
& \mathbf{P}(Z(n-x \varphi(n), n)=j \mid \mathcal{H}(n)) \\
& \quad=\frac{\mathbf{P}(Z(n-x \varphi(n), n)=j) \times \mathbf{P}(\mathcal{H}(n) \mid Z(n-x \varphi(n), n)=j)}{\mathbf{P}(\mathcal{H}(n))}
\end{aligned}
$$

Nagaev, Wachtel (2006): if the basic conditions are valid and $k, n \rightarrow \infty$ in such a way that the ratio k / n remains bounded then

$$
\lim _{n \rightarrow \infty} n^{2} B^{2}\left(1+\frac{1}{B n}\right)^{k+1} \mathbf{P}(Z(n)=k \mid Z(0)=1)=1
$$

Therefore, given $k / n \rightarrow 0$

$$
\begin{aligned}
\mathbf{P}(\mathcal{H}(n) \mid Z(0)=1)= & \sum_{1 \leq k \leq B \varphi(n)} \mathbf{P}(Z(n)=k \mid Z(0)=1) \\
& \sim \frac{1}{n^{2} B^{2}} \sum_{1 \leq k \leq B \varphi(n)} 1 \sim \frac{\varphi(n)}{n^{2} B}
\end{aligned}
$$

Denote $f_{n}(s)$ the nth iteration of $f(s)$ with itself. Then

$$
\begin{aligned}
& \mathbf{P}(Z(n-x \phi(n), n)=j)=\sum_{k=j}^{\infty} \mathbf{P}(Z(n-x \phi(n))=k ; Z(n-x \phi(n), n)=j) \\
& \quad=\sum_{k=j}^{\infty} \mathbf{P}(Z(n-x \phi(n))=k) C_{k}^{j} f_{x \phi(n)}^{k-j}(0)\left(1-f_{x \phi(n)}(0)\right)^{j} \\
& \quad=\frac{\left(1-f_{x \phi(n)}(0)\right)^{j}}{j!} f_{n-x \phi(n)}^{(j)}\left(f_{x \phi(n)}(0)\right) .
\end{aligned}
$$

Now

$$
\lim _{n \rightarrow \infty} n^{2}\left[f_{n+1}(0)-f_{n}(0)\right]=\frac{1}{B}
$$

We consider for $\lambda>0$ the function

$$
f_{m}\left(f_{x \varphi(n)}^{\lambda}(0)\right)=f_{m}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right)
$$

and find r such that

$$
1-f_{r+1}(0)<1-f_{x \varphi(n)}^{\lambda}(0) \leq 1-f_{r}(0)
$$

We know that

$$
1-f_{x \varphi(n)}^{\lambda}(0) \sim \lambda\left(1-f_{x \varphi(n)}(0)\right) \sim \frac{\lambda}{B x \varphi(n)}
$$

Hence we get

$$
r \sim \frac{x \varphi(n)}{\lambda}=o(n) \text { as } n \rightarrow \infty
$$

Hence we get

$$
r \sim \frac{x \varphi(n)}{\lambda}=o(n) \text { as } n \rightarrow \infty
$$

Then for $n-m=x \varphi(n)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{2}}{x \varphi(n)}\left[f_{m}\left(f_{r}(0)\right)-f_{m}(0)\right] \\
= & \lim _{n \rightarrow \infty} \frac{1}{x \varphi(n)} \sum_{k=0}^{r-1} n^{2}\left[f_{m}\left(f_{k+1}(0)\right)-f_{m}\left(f_{k}(0)\right)\right] \\
= & \lim _{n \rightarrow \infty} \frac{1}{x \varphi(n)} \sum_{k=0}^{r-1} \frac{n^{2}}{(m+k)^{2}}(m+k)^{2}\left[f_{m+k+1}(0)-f_{m+k}(0)\right] \\
= & \frac{1}{B} \lim _{n \rightarrow \infty} \frac{1}{x \varphi(n)} \sum_{k=0}^{r-1} 1=\frac{1}{B} \frac{1}{\lambda} .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{x \varphi(n)}\left[f_{m}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right)-f_{m}(0)\right]=\frac{1}{B} \frac{1}{\lambda}, \quad \lambda>0
$$

Clearly, the prelimiting and limiting functions are analytical in the complex semi-plane $\operatorname{Re} \lambda>0$.

Therefore, the derivatives of any order of the prelimiting functions converge to the respective derivatives of the limiting function for each λ with $\operatorname{Re} \lambda>0$.

Thus, for each $j \geq 1$

$$
\lim _{n \rightarrow \infty} \frac{B n^{2}}{x \varphi(n)} \frac{d^{j}}{d \lambda^{j}}\left[f_{m}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right)\right]=(-1)^{j} \frac{j!}{\lambda^{j+1}}
$$

Set $I_{j}:=i_{1}+\cdots+i_{j}$ and

$$
\mathcal{D}(j):=\left\{\left(i_{1}, \ldots, i_{j}\right): 1 \cdot i_{1}+2 \cdot i_{2}+\cdots+j i_{j}=j\right\},
$$

By Faà di Bruno's formula we have

$$
\begin{aligned}
& \frac{d^{j}}{d \lambda^{j}}\left[f_{m}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right)\right] \\
= & \sum_{\mathcal{D}(j)} \frac{j!}{i_{1}!\cdots i_{j}!} f_{m}^{\left(I_{j}\right)}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right) \prod_{r=1}^{j}\left(\left(\frac{e^{\lambda \log f_{x \varphi(n)}(0)}}{r!}\right)^{(r)}\right)^{i_{r}} \\
= & \sum_{\mathcal{D}(j)} \frac{j!}{i_{1}!\cdots i_{j}!} f_{m}^{\left(I_{j}\right)}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right) e^{\lambda I_{j} \log f_{x \varphi(n)}(0)} \prod_{r=1}^{j} \frac{\left(\log f_{x \varphi(n)}(0)\right)^{r i_{r}}}{(r!)^{i_{r}}} \\
= & \left(\log f_{x \varphi(n)}(0)\right)^{j} \sum_{\mathcal{D}(j)} \frac{j!}{i_{1}!\cdots i_{j}!} f_{m}^{\left(I_{j}\right)}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right) e^{\lambda I_{j} \log f_{x \varphi(n)}(0)} \prod_{r=1}^{j}\left(\frac{1}{r!}\right)^{i_{r}} .
\end{aligned}
$$

One can show by induction for $m=n-x \varphi(n)$ that

$$
\begin{aligned}
& \left.(-1)^{j} j!\sim \frac{B n^{2}}{x \varphi(n)} \frac{d^{j}}{d \lambda^{j}}\left[f_{m}\left(e^{\lambda \log f_{x \varphi(n)}(0)}\right)\right]\right|_{\lambda=1} \\
\sim & (-1)^{j} \sum_{\mathcal{D}(j)} \frac{j!}{i_{1}!i_{2}!\cdots i_{j}!} \frac{B^{2} n^{2}}{(B x \varphi(n))^{j+1}} f_{m}^{\left(I_{j}\right)}\left(f_{x \varphi(n)}(0)\right) \prod_{r=1}^{j} \frac{1}{(r!)^{i_{r}}} \\
\sim & (-1)^{j} \frac{j!}{j!0!\cdots 0!} \frac{B^{2} n^{2}}{(B x \varphi(n))^{j+1}} f_{m}^{(j)}\left(f_{x \varphi(n)}(0)\right) \\
= & (-1)^{j} \frac{B^{2} n^{2}}{(B x \varphi(n))^{j+1}} f_{m}^{(j)}\left(f_{x \varphi(n)}(0)\right) .
\end{aligned}
$$

This representation and previous results give

$$
\begin{aligned}
\mathbf{P}(Z(n-x \varphi(n), n)=j) & =\frac{\left(1-f_{x \varphi(n)}(0)\right)^{j}}{j!} f_{n-x \varphi(n)}^{(j)}\left(f_{x \varphi(n)}(0)\right) \\
& \sim \frac{1}{j!(x B \varphi(n))^{j}} \frac{j!(x B \varphi(n))^{j+1}}{B^{2} n^{2}} \sim \frac{x \varphi(n)}{B n^{2}} .
\end{aligned}
$$

Let now $Z_{1}^{*}(m), \ldots, Z_{j}^{*}(m)$ be i.i.d. random variables distributed as $\{Z(m) \mid Z(m)>0\}$, and let $\eta_{1}, \ldots, \eta_{j}$ be i.i.d. random variables having exponential distribution with parameter 1 . Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbf{P}(0<Z(n) \leq B \phi(n) \mid Z(n-x \varphi(n), n)=j) \\
= & \lim _{n \rightarrow \infty} \mathbf{P}\left(Z_{1}^{*}(x \varphi(n))+\cdots+Z_{j}^{*}(x \varphi(n)) \leq B \varphi(n)\right) \\
= & \lim _{n \rightarrow \infty} \mathbf{P}\left(\frac{Z_{1}^{*}(x \varphi(n))}{B x \varphi(n)}+\cdots+\frac{Z_{j}^{*}(x \varphi(n))}{B x \varphi(n)} \leq \frac{1}{x}\right) \\
= & \mathbf{P}\left(\eta_{1}+\cdots+\eta_{j} \leq \frac{1}{x}\right)=\frac{1}{(j-1)!} \int_{0}^{1 / x} z^{j-1} e^{-z} d z .
\end{aligned}
$$

As a result

$\lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n-x \varphi(n), n)} \mid \mathcal{H}(n)\right]=\sum_{j=1}^{\infty} \lim _{n \rightarrow \infty} \mathbf{P}(Z(n-x \varphi(n), n)=j \mid \mathcal{H}(n)) s^{j}$

$$
\begin{aligned}
& =\sum_{j=1}^{\infty} \frac{x}{(j-1)!} \int_{0}^{1 / x} s^{j} z^{j-1} e^{-z} d z \\
& =x s \int_{0}^{1 / x} e^{(s-1) z} d z=\frac{x s}{1-s}\left(1-e^{-(1-s) / x}\right)
\end{aligned}
$$

Generalizations:

- infinite variance for the offspring number??? :
there is NO local limit theorem for $Z(n)=j$ for large $j(!)$
- Age-dependent processes, that is the processes with $G(t)=\mathbf{P}(\tau \leq t)$ being the life-length distribution of the particles of the process and $\mu=\mathbf{E} \tau$.

It is known (V., 1976, 1979) that if $\mathbf{E} \xi=1, \quad 2 B:=\operatorname{Var} \xi \in(0, \infty)$, and

$$
1-G(t)=\mathbf{P}(\tau>t) \sim \frac{C}{t^{\gamma}}
$$

then, for $\gamma \in(0,2)$

$$
\lim _{t \rightarrow \infty} \mathbf{E}\left[s^{Z(t)} \mid Z(t)>0\right]=1-\sqrt{1-s},
$$

for $\gamma>2$

$$
\lim _{t \rightarrow \infty} \mathbf{P}\left(\left.\frac{\mu}{B t} Z(t) \leq x \right\rvert\, Z(t)>0\right)=1-e^{-x},
$$

If $\gamma=2$ then
a) for all $s \in[0,1)$

$$
\lim _{t \rightarrow \infty} \mathbf{E}\left[s^{Z(t)} \mid Z(t)>0\right]=1-\frac{\mu+\sqrt{\mu^{2}+4 C(1-s)}}{\mu+\sqrt{\mu^{2}+4 C}}
$$

b) for any $x>0$

$$
\lim _{t \rightarrow \infty} \mathbf{P}\left(\left.\frac{\mu}{B t} Z(t) \leq x \right\rvert\, Z(t)>0\right)=1-r+r\left(1-e^{-x}\right)
$$

with

$$
r=\frac{2 \mu}{\mu+\sqrt{\mu^{2}+4 C}}
$$

R. Abraham and J.-F. Delmas. (2014) Local limits of conditioned Galton-Watson trees: the infinite spine case. Elec. J. of Probab., 19:1-19,.
R. R. Abraham and J.-F. Delmas. (2015) An introduction to Galton-Watson trees and their local limits. arXiv:1506.05571.
回
R. Abraham, A. Bouaziz, J.-F. Delmas. (2015) Local limits of Galton-Watson trees conditioned on the number of protected nodes. arXiv:1509.02350.

- Athreya, K. B. (2012) Coalescence in the recent past in rapidly growing populations. Stochastic Processes and their Applications, 122, 3757-3766.

Athreya, K. B. (2012) Coalescence in critical and subcritical Galton-Watson branching processes. Journal of Applied Probability, 49, 627-638.Durrett, R. (1978) The genealogy of critical branching processes. Stochastic Processes and their Applications, 8, 101-116.

Fleischmann，K．，Prehn，U．（1974）Ein Grenzfersatz für subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen．Math． Nachr．，64，233－241．
䍰 Fleischmann，K．，Siegmund－Schultze，R．（1977）The structure of reduced critical Galton－Watson processes．Math．Nachr．，79，233－241．
R－Harris，S．C．，Johnston，S．G．G．，and Roberts，M．I．（2017）The coalescent structure of continuous－time Galton－Watson trees． https：／／arxiv．org／pdf／1703．00299．pdf
國 Johnston，S．G．G．（2017）Coalescence in supercritical and subcritical continuous－time Galton－Watson trees．
https：／／arxiv．org／pdf／1709．008500v1．pdf
國 Lambert，A．（2003）Coalescence times for the branching process．Advances in Applied Probability，35，1071－1089．
园 Lambert，A．（2016）Probabilistic models for the subtrees of life． https：／／arxiv．org／abs／1603．03705

國 Le, V. (2014) Coalescence times for the Bienaymé-Galton-Watson process. Journal of Applied Probability, 51, 209-218.
. Nagaev, S. V. and Vakhtel, V. I. (2006) On the local limit theorem for a critical Galton-Watson process. Theory Probab. Appl., 50, 400-419.
O'Connell, N. (1995) The genealogy of branching processes and the age of our most recent common ancestor. Advances in Applied Probability, 27, 418-442.
R
Vatutin, V. A. and D'yakonova, E. E. (2015) Decomposable branching processes with a fixed extinction moment. Proc. Steklov Inst. Math., 290, 103-124.
睩 Zubkov, A. M. (1975) Limit distributions of the distance to the nearest common ancestor. Theory Probab. Appl., 20, 602-612.

