
Numerical and
simulation
methods for

solving integral
equations in
branching
processes

Plamen
Trayanov

Problem
Formulation

Properties of the
solution

Numerical
approximation

Simulation
method. Virtues
and restrictions

Numerical vs
Simulation
method

References

Numerical and simulation methods for

solving integral equations in branching

processes

Plamen Trayanov

So�a University, Faculty of Mathematics and Informatics, Department of
Probability, Operational Research and Statistics

Badajoz 2018, 10-13 April, 2018
The research is supported by the National Fund for Scienti�c Research at the Ministry of

Education and Science of Bulgaria, grant No DFNI-I02/17 and partially supported by the

�nancial funds allocated to the So�a University "St. Kl. Ohridski", grant No

80-10-146/21.04.2017.



Numerical and
simulation
methods for

solving integral
equations in
branching
processes

Plamen
Trayanov

Problem
Formulation

Properties of the
solution

Numerical
approximation

Simulation
method. Virtues
and restrictions

Numerical vs
Simulation
method

References

Problem Formulation

The general equation

Z (t) = z(t) +

t∫
0

f (y ,Z (t − y)) dG (y). (1.1)

Equations of this type could be seen for example for Galon-Watson BP,
Sevastyanov BP, Bellman-Harris BP, Crump-Mode-Jagers BP (see
[Sevastyanov, 1971, Mitov and Yanev, 985a, Jagers, 1975,
Haccou et al., 2005, Crump and Mode, 1968, Crump and Mode, 1969,
Sagitov and Serra, 2009, Serra, 2006, Serra and Haccou, 2007].
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Properties of the solution (1)

Lemma 1 (Lemma)

Let the function f : R× R→ R is continuous, function z : R→ R �
di�erentiable and the function G : [0,∞]→ R has a continuous second
derivative. Then the solution to the following equation

Z(t) = z(t) +

t∫
0

f (y ,Z(t − y)) dG(y) (2.1)

is also di�erentiable and thus also continuous. If in addition G has continuous
second derivative and z continuous �rst derivative, then Z has continuous
derivative.

In the lemma above the condition for smoothness of G(t) and z(t) can be
relaxed to smooth or continuous functions almost everywhere, except �nite
number of points.
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Properties of the solution (2)

Lemma 2 (Lemma)

Let the assumptions of smoothness in Lemma 2 hold, except at point t0, where
we relax the conditions to have a jump discontinuity. Then
a) If G ′ is discontinuous at t0, then Z ′ is also discontinuous at t0. The jump of
Z ′ at t0 is δ′Z (t0) = δG (t0) · f (Z(0));
b) If G is discontinuous at t0, then Z is also discontinuous at t0. The jump of
Z at t0 is δZ (t0) = f (Z(0))[G+(t0)− G−(t0)];
c) If z ′ is discontinuous at t0, then Z ′ is also discontinuous at t0; The jump of
Z ′ at t0 is δ′Z (t0) = δ′z (t0).
d) If z is discontinuous at t0, then Z is also discontinuous at t0; The jump of
Z at t0 is δZ (t0) = δz (t0).
Note: If a) and c) are both satis�ed at the same time, then the jump of Z ′ is
the sum of the jumps in a) and c). If b) and d) are both satis�ed at the same
time, then the jump of Z is the sum of the jumps in b) and d).

Note: Even though Lemma 2 considers the case of a single jump discontinuity
in G and z, a corresponding result obviously holds for the case of �nite number
of such jump points.
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Numerical approximation (1)

Theorem 3

Let the function f : [0,∞]x[0,∞]→ R has continuous partial derivatives and
the function G : [0,∞]→ R has a continuous second derivative. Let the
function z : [0,∞]→ R is di�erentiable. Then the solution to the equation

Z(t) = z(t) +
∫ h
0 f (y ,Z(t − y))dG(y) can be approximated by the recurrence

equation

Ẑ(kh) = z(kh) + f (h, Ẑ((k − 1)h)) · [G(h)− G(0)] + . . .

+ f (kh, Ẑ(0)) · [G(kh)− G(kh − h)];

Ẑ(0) = Z(0) = z(0),

(3.1)

where the approximation error is Ekh = Z(kh)− Ẑ(kh) = O(h), for every
k = 1, . . . , t/h. The approximation result continue to hold if the functions
G ,G ′, z and z ′ have �nite number of jump discontinuities.

Notice that if f is the identity function, equation (2.1) turns into renewal
equation. So the numerical method is also suitable for solving renewal
equations.
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Numerical approximation (2)

Theorem 4

Let the conditions of the Theorem 3 hold. The solution to the equation (2.1)
can also be approximated by

Ẑ(kh) = z(kh) + f (h, Ẑ((k − 1)h)) · G ′(h)h + . . .+ f (kh, Ẑ(0)) · G ′(kh)h;

Ẑ(0) = Z(0) = z(0),

(3.2)

where the approximation error is Ekh = Z(kh)− Ẑ(kh) = O(h), for every
k = 1, . . . , t/h.

Theorem 4 can be used when we have a model for G ′(t), where Theorem 3 is
used when we have a model for G , but not its derivative. The latter could
happen for example if we model G with smoothing splines and L2 roughness
penalty. Then we have a reliable model for G , but the derivative of the model
is not that stable.
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Renewal equation case (1)

Theorem 5 (Renewal equation approximation)

If we consider the special case f (u,Z(t − u)) = Z(t − u), then Equation (2.1)
is a renewal equation. Let ω is such that z(s) > 0 for all s ∈ [0, ω) and
z(s) = 0, for all s ≥ ω. Then the numerical approximation also has a matrix
formulation:

Zkh = z(0) ·
[
1 1 . . . 1

]
1×ω

h
· Ak ·


1
0
...
0


ω
h
×1

for every k = 1, . . . , t/h.

Previous numerical methods include
[Xie, 1989, From, 2001, Bartholomew, 1963, Mitov and Omey, 2014]
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Renewal equation case (2)

Theorem 6 (Renewal equation approximation)

The approximation matrix A is de�ned as



G(h)−G(0)
z(0)

z(0)
G(2h)−G(h)

z(h)
z(0) . . .

G(ω−h)−G(ω−2h)
z(ω−2h)

z(0)
G(ω)−G(ω−h)

z(ω−h)
z(0)

z(h)
z(0)

0 . . . 0 0

0
z(2h)
z(h)

. . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . .
z(ω−h)
z(ω−2h)

0


ω
h
×ω

h

.

Note that if t ≤ ω then we can use a truncated matrix, consisting of the �rst
(t/h) + 1 rows and columns and we will get the same approximation. Also, if
z(s) > 0 for all s, then ω = +∞.
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The Leslie matrix

For a human population G(0) = 0 and z(0) = 1. Lets consider h = 1 and
denote qk = z(k + 1)/z(k) to be the probability a woman aged k to survive to
k + 1 and pk = (G(k + 1)− G(k))/qk to be the probability a woman aged k
to give a birth, k = 0, . . . ω − 1. Then the approximation matrix A coincides
with the Leslie matrix in demography ([Leslie, 1945, Leslie, 1948]):

A =


p0 p1 . . . pω−1 pω
q0 0 . . . 0 0
0 q1 . . . 0 0
...

...
. . .

...
...

0 0 . . . qω−1 0



k

ω×ω

.

The solution of the integral equation, Z(k), is then the expected future
population count in k years.
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Example. Virtues and restrictions (1)

Virtues

1 One code to simulate Galton-Watson, Bellman-Harris and General
Branching Processes;

2 Considers multi-type processes with mutations between them;

3 Mutation probabilities could be constant, varying or random;

4 Considers constant, varying or random environment;

5 Considers constant, varying or random immigration;

6 Considers constant, varying or random initial number of particles on
constant, varying or random ages;



Simulation Code (MATLAB)



Simulation Example (1)



Simulation Example (2)
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Simulations. Virtues and restrictions (1)

Virtues

1 One code to simulate Galton-Watson, Bellman-Harris and General
Branching Processes;

2 Considers multi-type processes with mutations between them;

3 Mutation probabilities could be constant, varying or random;

4 Considers constant, varying or random environment;

5 Considers constant, varying or random immigration;

6 Considers constant, varying or random initial number of particles on
constant, varying or random ages;
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Simulations. Virtues and restrictions (2)

Other Virtues

1 It presents a simple short code (only 43 lines) that simulates branching
processes;

2 It is capable of simulating VERY large number of particles (as an
example: 10250) in the branching processes, without requiring a lot of
RAM (by using normal approximation of binomial distribution when
possible);

3 The simulation is actually faster for large populations due to the normal
approximation;

4 It produces not only the total population count, but also the population
count by age and type at each moment of time. Returning the
population count by age as an output however may require a lot of
computer memory (more than a 100 GB RAM in some cases);

5 It could be extended to include controlled branching processes. However,
this would most probably require the code to be customized only for the
speci�c process as the possibilities for such theoretical dependences
between population size, birth, death and migration laws could be quite
large;

6 Uses all computer cores for faster calculation.
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Simulations. Virtues and restrictions (3)

Restrictions

1 Particles cannot die/give birth at the beginning of their life. Probability
of that event is considered zero;

2 Birth and death densities must be smooth functions with exception of
�nite jump type discontinuities;

3 The birth, death distributions, mutation probabilities and immigration
are independent with each other and with the branching process itself.
I.e. the simulation does not include the class of "controlled branching
processes although it could be extended to suit the speci�c needs.
Depending on the type of controlled process and the dependence on the
age structure at precious times, this could require a lot of memory;

4 It considers only immigration, as emigration is naturally dependent on
the population count and age structure and could be modelled in variety
of ways.



Numerical and
simulation
methods for

solving integral
equations in
branching
processes

Plamen
Trayanov

Problem
Formulation

Properties of the
solution

Numerical
approximation

Simulation
method. Virtues
and restrictions

Numerical vs
Simulation
method

References

Example 1. The classical Galton-Watson
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Example 2. Bellman-Harris (1)
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Example 2. Bellman-Harris (2)
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Example 2. Bellman-Harris (3)
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Example 3. Bellman-Harris (1)
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Example 3. Bellman-Harris (2)
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Example 3. Bellman-Harris (3)

T - waiting time for 'successful mutant' appearance

Theorem 7

The probability P(T > t) that successful mutant has not been born yet
satis�es the following integral equation:

P(T > t) = 1− G1(t) +

t∫
0

f1(uq0 + (1− u)P(T > t − y)) dG1(y). (5.1)
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Example 1. Bellman-Harris (4)

Theorem 8

The joint probability that successful mutant has not been born yet and we do
not have cells of type 1 (with subcritical reproduction, m1 < 1) satis�es the
following integral equation:

P(T > t,Z1(t) = 0) =

t∫
0

f1(uq0+(1−u)P(T > t−y ,Z1(t−y) = 0)) dG1(y).

(5.2)
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Example 3. Bellman-Harris (5)
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Example 3. Bellman-Harris (6)
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Example 4. General BP (1)
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Example 4. General BP (2)

In GBP, the expected population count satis�es an
integral equation.

Theorem 9

Let µ(t) = µ([0, t]) <∞ for t > 0. Let L(t) = P(λx ≤ t) and S(t) = 1− L(t)
is the survival probability function. Then mt = E(zt) <∞, ∀t and ma

t = E(zat )
satis�es

ma
t = 1[0,a](t){1− L(t)}+

t∫
0

ma
t−u µ(du). (5.3)
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Example 4. General BP (3)
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Example 5. General BP (1)
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Example 5. General BP (2)
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Example 5. General BP (3)
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THANK YOU!
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