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amen, Z(t):Z(t)+/f(y,2(t—y))dG(y). (1.1)
0

Problem
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Equations of this type could be seen for example for Galon-Watson BP,
Sevastyanov BP, Bellman-Harris BP, Crump-Mode-Jagers BP (see
[Sevastyanov, 1971, Mitov and Yanev, 985a, Jagers, 1975,

Haccou et al., 2005, Crump and Mode, 1968, Crump and Mode, 1969,
Sagitov and Serra, 2009, Serra, 2006, Serra and Haccou, 2007].
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Properties of the solution (1)

Lemma 1 (Lemma)

Let the function f : R x R — R is continuous, function z : R — R —
differentiable and the function G : [0,00] — R has a continuous second
derivative. Then the solution to the following equation

Z(t) = 2(1) + / Fy, Z(t — y)) dG(y) (21)
0

is also differentiable and thus also continuous. If in addition G has continuous
second derivative and z continuous first derivative, then Z has continuous
derivative.

In the lemma above the condition for smoothness of G(t) and z(t) can be
relaxed to smooth or continuous functions almost everywhere, except finite
number of points.
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Properties of the solution (2)

Lemma 2 (Lemma)

Let the assumptions of smoothness in Lemma 2 hold, except at point ty, where
we relax the conditions to have a jump discontinuity. Then

a) If G’ is discontinuous at to, then Z' is also discontinuous at to. The jump of
7" at tg is (S,Z(to) = 5G(t0) . f(Z(O)),'

b) If G is discontinuous at to, then Z is also discontinuous at ty. The jump of
Z atty Is 5z(t0) = f(Z(O))[G+(t0) — Gf(to)],'

¢) If ' is discontinuous at to, then Z' is also discontinuous at to; The jump of
Z' at to is 0% (to) = 0,(to).

d) If z is discontinuous at ty, then Z is also discontinuous at to; The jump of
Z at tg Is 52(!’0) = (Sz(to).

Note: If a) and c) are both satisfied at the same time, then the jump of Z' is
the sum of the jumps in a) and c). If b) and d) are both satisfied at the same
time, then the jump of Z is the sum of the jumps in b) and d).

Note: Even though Lemma 2 considers the case of a single jump discontinuity
in G and z, a corresponding result obviously holds for the case of finite number
of such jump points.



Numerical approximation (1)

Numerical and Theorem 3
i
,:LT:OZ:[}Z, Let the function f : [0, c0]x[0, 00] — R has continuous partial derivatives and
solving integral the function G : [0,00] — R has a continuous second derivative. Let the
egf::';’;:g'" function z : [0,00] — R is differentiable. Then the solution to the equation
processes Z(t) = z(t) + foh f(y,Z(t—y))dG(y) can be approximated by the recurrence
equation
Plamen
Trayanov
Z(kh) = z(kh) + f(h, Z((k — 1)h)) - [G(h) — G(O)] + ...
+ f(kh, 2(0)) - [G(kh) — G(kh — h)]; (3.1)
2(0) = (0) = 2(0),
:‘:;’:j:;tion where the approximation error is Ey, = Z(kh) — Z(kh) = O(h), for every

k=1,...,t/h. The approximation result continue to hold if the functions
G, G’ ,z and z' have finite number of jump discontinuities.

Notice that if £ is the identity function, equation (2.1) turns into renewal
equation. So the numerical method is also suitable for solving renewal
equations.



Numerical and
simulation
methods for
solving integral
equations in
branching
processes

Plamen
Trayanov

Numerical
approximation

Numerical approximation (2)

Theorem 4

Let the conditions of the Theorem 3 hold. The solution to the equation (2.1)
can also be approximated by

Z(kh) = z(kh) + f(h, Z((k — 1)h)) - G'(h)h+ ... + f(kh, Z(0)) - G'(kh)h;
2(0) = Z(0) = 2(0),
(3.2)

where the approximation error is Ex, = Z(kh) — Z(kh) = O(h), for every
k=1,...,t/h.

Theorem 4 can be used when we have a model for G’(t), where Theorem 3 is
used when we have a model for G, but not its derivative. The latter could
happen for example if we model G with smoothing splines and L»> roughness
penalty. Then we have a reliable model for G, but the derivative of the model
is not that stable.



Renewal equation case (1)
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equations in i i i
branching If we consider the special case f(u, Z(t — u)) = Z(t — u), then Equation (2.1)
R is a renewal equation. Let w is such that z(s) > 0 for all s € [0,w) and

Plamen z(s) =0, for all s > w. Then the numerical approximation also has a matrix
Trayanov formulation:

ZkhZZ(O)-[]. 1 ... 1]1>< LAk

L
h

Numerical % x1
approximation

for every k =1,...,t/h.

Previous numerical methods include
[Xie, 1989, From, 2001, Bartholomew, 1963, Mitov and Omey, 2014]
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Renewal equation case (2)

Theorem 6 (Renewal equation approximation)
The approximation matrix A is defined as
G(w) = Gle=h) )

G(hi(—o)c(o) 2(0) G(2hz)(;)6(h) 2(0) G(wiz’(’t);fz(;ji%)z(o) )=
£ 0 0
0 Zz((zh”)) . 0 0
) ) P4 w‘—h
0 0 . z((w ] h)) 0 o x

Note that if ¢ < w then we can use a truncated matrix, consisting of the first
(t/h) + 1 rows and columns and we will get the same approximation. Also, if

z(s) > 0 for all s, then w = +o0.

=15



The Leslie matrix
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solving integral For a human population G(0) = 0 and z(0) = 1. Lets consider h =1 and
eg:::';’:: n denote g, = z(k + 1)/z(k) to be the probability a woman aged k to survive to
Processef k+1 and py = (G(k + 1) — G(k))/qx to be the probability a woman aged k
to give a birth, k =0,...w — 1. Then the approximation matrix A coincides
Rlamey with the Leslie matrix in demography ([Leslie, 1945, Leslie, 1948]):
Trayanov
k
Po P1 .o Pw—1 Pw
g 0 ... 0 0
A=|0 a .. 0 0
Numerical . . . .
approximation 0 0 e qu—1 0 X

The solution of the integral equation, Z(k), is then the expected future
population count in k years.



Example. Virtues and restrictions (1)
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Trayanov Branching Processes;
Considers multi-type processes with mutations between them;
Mutation probabilities could be constant, varying or random;
Considers constant, varying or random environment;
Considers constant, varying or random immigration;
A Considers constant, varying or random initial number of particles on

constant, varying or random ages;
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Simulation Code. Matlab

[function [Z, Z_types]-simulate BP(sim num, T, h, draw_S, draw H, draw U, draw_Z 0, draw_mu, draw_Im, approx_limit)
if (isnumeric(draw_S) && ismatrix(draw_S)), draw_S-€ () (repmat (draw S, [1,1,T/h+1])); end

if (isnumeric(draw_H) && ismatrix(draw _H)), draw_H-€ () (repmat (draw_H, [1,1,T/h+1])); end

if (isnumeric(draw_U) && ismatrix(draw_U)), draw_U=E () (repmat(draw_U,[1,1,T/h+11)); end

if (isnumeric(draw_z_0) && ismatrix(draw_2_0)), draw_Z_0=€() (draw_z_0); end

if (~igsempty(draw_mu) &£& isnumeric(draw _mu) && 1Smatrix(draw mu)), draw_mu=@ () (repmat (draw_mu, [1,1,T/h+11)); end

if(~isempty(draw_Im) && isnumeric(draw_Im) && ismatrix(draw_Im)), draw_Im=g() (repmat (draw_Im, [1,1,T/n+1])); end
n_types=size(drew_S(),2); % the number of types
Z_types=zeros(sim_num, n_types, T/h+l): % the branching process by types - sum of all individuals by types at time [0, T].

S=draw_S(); H=draw_H(); U=draw_U{): Z_O=draw_Z 0():
if ~isempty(draw_ms), mu=draw mu(); end;
if ~isempty(draw_Im), Im=draw_Im(); end;

Nezeros (size(S)): % population structure - N(age, type, time)
if(size(Z_0,1)~=size(S,1)), N(1,:,1)=Z_0; eslse N(:,:,1)=Z_0; end
for t=1:T/n %+ go througn time
if ~isempty(draw_Im} % add immigration
N(z, 1,0, 1, ) I, 1, )

end
if any(any(N(:
size (N, 1)-1 % for each age
ize(N,2) % for each type of particle
if N(i,3j,t)~=0 && S(i,j,t)~=0 % if no particles of that type are alive, no need to simulate their deaths
deaths=N(1i,3,t)-binornd large (N(i,3,t), S(i+1,3,t)/S(1,3,%), approx_limit);
if isempty(draw_mu) % assumes the particle splits at its death if mu is unspecified
birthsemnrnd large (deaths, H(:,3,t)',1, approx_limit)<(0:(length(H(:,3,t))-1)) s

Il ~isempty(draw_Tm) % if there is at least one particle of any type at time t, simulate for t+h

else
births=mnrnd large (binornd large (N(i,3,t), ma(i,J,t)*h, approx limit), H(:,3,t)',1, approx_limit)+(0:(lengch(H(:,3,t))-1})"':

end

N(i+1,3,t+1)=N(i,j,t)-deaths; % the ones that survived get to get older by h

M(1,:,+1)=N(1,:,t+1) + mnrnd large (births, U(:,3,t)',1, approx_limit);

end
F end
F end
else % if the populatien count is 0 at T, and we have no immigratien,
break; % no need to simulate any further
end

F end
Z_types(ind,
Fend

sum(N,1); % sum of all individuals by type

z=squeeze (sum(Z_tvpes, 2)); % sum of all types
Lend




Example Code. Defining the simulation parameters

%% EXAMPLE CODE: mmlti-type GBP in random environment, with mmtations, immigration and
% random initial age structure

sim nun=100; % number of simulations to perform

T=250: % simulate the branching process in the interval [0, T].

h=0.1; % time discretization

omega=110; % the maximum lifelength until time T.

% Example for time invariant H:
H=[1, 0; 0, 1]"': % set to be time invariant

% Example for H in random environment:
| function H=draw H(T, h)
H=zeros (3, 2, T/h+l):
| for t=1:T/h
p_step=-0.2/(T/h}):
p=binornd(1,1:p step: (0.8-p step)):; % changing and random environment
H(:,:,t)=p*[1, 0, O:; 0, 1, O]1'+({1-p)*[1, O, O; O, O.5, 0.5]"':
end
-end

U=[1, 0; 0.55, 0.45]'; % set to be time invariant (could be also set to random)

Z_0=@() ([zeros (omega/h+1, 1), mnrnd(l+binornd(10,0.5), ones(l,omega/h+1)./ (omega/h+l)}"']1);

[Z, Z_types]=simulate BP(sim num, T, h, @&() (draw_S5(T,h,omega)), @() (draw H(T,nh)), U, Z_0O,
@() (draw_mu(T,h,omega)), @() (draw_Im(T,h,omega)}, 20):

u]
8]
I
n
!

2L N4



function S=draw S (T, h, omega) % generate random path for 3
S=zeros (omega/h+l, 2, T/h+l);
for t=1:T/h
mean w=unifrnd (70, T4):
std w=unifrnd(8,12);
mean m=unifrnd(74, TE8):
std m=unifrnd(9,11);
5(:,:,t)=[(1-normedf (0:h:omega, mean w, std w)')./(l-normedf (0, mean w, std w)), ...
(1-normcdf (0:h:omega,mean m, std m)')./(l-normcdf(0,mean m, std m))];
S{end, :,t)=0;
end
end
function mu=draw mu (T, h, omega)
% generate the path of function mu
% mean is increasing
mu_mean=linspace (28,35,T/h+1):
mu=zeros (omega/h+l, 2, T/h+l):
for t=1:T/h
m=unifrnd(l1.5, 2);
mu_women pdf=normpdf (0:h:omega, mu mean(t), 5)';
mu_women pdf([1:12/h, 50/h:end])=0;
mafi,i,t)=[zeros (size (mu_women pdf)), rm_wumen_pdf*m/ (sum (mu_women_pdf)*h}];
end
end
function Im=draw_ Im(T, h, omega)
% generate the path of function mu
% mean is increasing
Im=zeros (omega/h+1l, 2, T/h+l): % no immigration at time 0
for ©=1:T/h+1
Im(:,:,t)=[zeros(omega/h+1l, 1), mnrnd(binornd(l, h*0.01), ones(l,omegas/h+l)./(omega/h+1))']:
end
end
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Simulations. Virtues and restrictions (2)

Other Virtues

It presents a simple short code (only 43 lines) that simulates branching
processes;

It is capable of simulating VERY large number of particles (as an
example: 10259) in the branching processes, without requiring a lot of
RAM (by using normal approximation of binomial distribution when
possible);

The simulation is actually faster for large populations due to the normal
approximation;

It produces not only the total population count, but also the population
count by age and type at each moment of time. Returning the
population count by age as an output however may require a lot of
computer memory (more than a 100 GB RAM in some cases);

It could be extended to include controlled branching processes. However,
this would most probably require the code to be customized only for the
specific process as the possibilities for such theoretical dependences
between population size, birth, death and migration laws could be quite
large;

Uses all computer cores for faster calculation.
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Restrictions

Particles cannot die/give birth at the beginning of their life. Probability
of that event is considered zero;

Birth and death densities must be smooth functions with exception of
finite jump type discontinuities;

The birth, death distributions, mutation probabilities and immigration
are independent with each other and with the branching process itself.
|.e. the simulation does not include the class of "controlled branching
processes although it could be extended to suit the specific needs.
Depending on the type of controlled process and the dependence on the
age structure at precious times, this could require a lot of memory;

It considers only immigration, as emigration is naturally dependent on
the population count and age structure and could be modelled in variety
of ways.
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Example 2. Bellman-Harris (1)
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Example 2. Bellman-Harris (3)
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Example 3. Bellman-Harris (1)
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Trayanov +o0 x H=[a/(1+q), 0, 1/(1+q);
' 1-0.375, 0, 0.375]’;
. 100% Survivahility Function:
1u s,=[100...0]
5,=N(10,2.5)

«— — q=0.3;
u=0.2;

a>0 a<0
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mutant

H=[ 1, 0 O ;
1, 0 0 ;
1-0.375,0,0.375];
Survivability Function:

$,=[100...0]
$,=[100...0]
$,=N(10,2.5)
q=0.3;
u=0.2;
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The probability P(T > t) that successful mutant has not been born yet
satisfies the following integral equation:

P(T > t) =1— Gy(t) +/f1(uqo + (1= u)P(T>t—y)dG(y). (5.1)
0
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Plamen The joint probability that successful mutant has not been born yet and we do
Trayanov

not have cells of type 1 (with subcritical reproduction, my < 1) satisfies the
following integral equation:

t

P(T > t,Z%(t) = 0) :/fl(uqo+(1—u)IP’(T >t—y, Z (t—y) =0))dGi(y).
° (5.2)
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Example 4. General BP (1)

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

100%

Classical General BP

At time 0:
Zp=1,aged0
Offspring distribution:
H=[0, 1];
mu=0.7*N(28, 5)
Survivability Function:
Swomen=N(76, 10)
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Example 4. General BP (2)
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proceRe integral equation.
Plamen
fhevancy Theorem 9

Let p(t) = p([0,t]) < oo fort > 0. Let L(t) =P(A\x < t) and S(t) =1 — L(t)
is the survival probability function. Then m: = E(z:) < oo,Vt and m? = E(z?)
satisfies

m? = 1.(O{1 — L()} + / m2_, u(du). (53)

Numerical vs
Simulation
method
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Example 5. General BP (1)

Numerical and Attime 0:
simulation Z,=[0, 1+Bi(10, 0.5)]
o=[0, , 0.
mt.atho.ds for General BP uniformely distributed by age
solving integral Offspring distribution:
equatlor!s in H=p*[1, 0; 0, 1]'+(1-p)*[1,0,0; 0,0.5,0.5]';
branching p=Be(1)-> Be(0.8)
processes 45% mu=m*N(28->35, 5)
m=U(1.5,2)
Plamen Survivability Function:
Trayanov 5% Smen=N(U(70, 74}, U(9,11))
< Swoemen=N(U(74,78), U(10,12)}
Imigratio!
random uniform (by age) immigration for
women and no immigration for men
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Example 5. General BP (3)
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