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* Basic Ideas of Branching Processes
* Problem Description
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* Scope of Further Work

e Questions and Suggestions



Multi-type Branching Process

0

Criticality and Forefather distribution in a
variant of Galton Watson Branching Process



Basic |deas of Simple Branching Processes

* Particles or objects can generate objects similar to
themselves

* A particle of n*" generation produces offsprings which belong
to n+ 1t generation

o Essentially a Markov chain defined on non-negative integers
» A probability law is assigned for reproduction of offsprings
 All individuals follow this law independently of each other

» Conditional on the current generation, the generating
function of the next generation can be determined



Problem Description

Model the process in a way that mimics the real human
population

People can have discrete ages — 0, a,2a,3a,...ka

We begin with one individual of age 0 in the O
generation

€€

Probability that an individual of age “i”a will survive in
next generation is given by p; .,

After age “k”a, individuals and their possible offsprings are
not taken into consideration for the model

€€

An individual of age “i”a gives birth to finite number of
individuals of age 0 with mean A

Thus, if we model the process using multitype branching
process, we get the following mean matrix



Mean Matrix for the Process

0 py; O 0 0
At 0 D12 0 0
L, 0 0 0 0

Ak-1 0 0 0 Pr-1k
L, 0 0 0 0




Long run behaviour of the process

Usually, it is helpful to classify the process as sub-critical, critical or supercritical
(Probability of extinction < [)

In multitype branching process, if eigenvalue of mean matrix >1, it implies
process is super critical

We provide a proof of the intuitive condition that if one individual produces
more than one individual on an average during it’s entire life, it implies the
process is super critical

© L) Ay *pop F Ag*po *pigt oo NxPo *pg* - * Pr-1k > | is equivalent to
eigenvalue of mean martix greater than |, hence supercritical

© 2) Ay Pop T Agrpo Py F ot NkPg ¥P ¥ o ¥ Pk < (=) | is equivalent
to eigenvalue of mean martix less than (equal to) , hence subcritical (critical)



Forefathers
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Question

* In a generation, how many individuals have

a given number of forefathers??
Random variable ] = no. of individuals of

age i in the nt" generation having j
forefathers

 properties of the random variables X}fj
« E(X} )Var(X i) P(X :=r) and so on

e Limiting behavior of these variables



Recurrence Relations for Expected Value

Let us denote the expected number of individuals in the nt generation

€€

of age “i"a having j forefathers be denoted by Ej; = E(X}})

n+1 — n n n
EO,]+1 _AI * E1’] + AZ*EZ,] + .....+ Ak * Ek’]

n+1 — n
El,j = Po1 * EO,j
n+1 — n
Eyi  =pi2*Eq;
n+1 — n
E3,j — D23 * E2,j

n+1 _— n
Ex;™ = Pr-1k * Ex_1;

The equations can be combined to obtain the following
expression —

n+l1 — n-1 n-—2 n—-k
Eoj+1 =M * Por * Eg ;- + Aa*por*pia Egj° + ..ot Ne*por*pio* -+ * Pr—1k * Eq



Expected number of forefathers

- We derive an exact expression from this recurrence relation for
Eg j which equals

- r J! / (3] n+zl 1 lll) e s2j= Zl 1(l+1) i1)~rl1 Ilz 1ik—2
le,lz,...lk_ZEC (3j—n+2 lll) (Hl : 21 )\ 7\ 7\ )\ k

{ini0 gy 153 20,i3 20,02 =03 —n+ X721, 20, n—2j — Y21+ 1).i; = 0}

(N *
o Ny =4 TPoi#*D 1% * i1y



A smaller version of the problem

e Discretizing the population to start with a simple
model (k=2,a =20)
* We assume that one generation is equal to 20 years
e There are three kinds of people in the population
Age 0, Age 20 and Age 40

* We assume that Age 0 don’t give birth, they turn to
Age 20 after one generation with probability p

» Age 20 gives birth to Age 0 with mean A, they turn
Age 40 after one generation with probability g

* Age 40 gives birth to Age 0 with mean p, they are
then taken out of consideration for the model



Problem Description

* Thus, the problem can be formulated as a
3 type branching process with types being

a.) Age 0;b.) Age 20;c.) Age 40

e Mean Matrix (M = (m,]) )

0 » O
A 0 g
u 0 O



Expectation Expression

* We just take type “Age 0 for illustration
 All other types can be easily derived from
this
* Recurrence Relation :
n+l — n-—1 n-—2
* Eg i1 SMp* Ep ;7 + Wp*qT Eg

* Note : To start the process, we assume

that the (0)* generation contains one
individual of Age 0




Expectation Expression

° E(r)l,r =TChorp1 (AP)> ™ (ppg)nartt

* Note: we have not assumed any distribution, the only
assumption made is that mean of the offspring
distribution exists

e rvaries from [ [n/3] +1,[n/2] ]

e Another quantity of interest could be to find where
does the value of Ejj . attain it’'s maximum



Maximum number of forefathers

n
Eor+1

n
o,r

expression is unimodal with respect to r
* Let r_. be the index for which the

MmaxXx

expected value of number of forefathers
IS maximum

tells us that for large n, the

* We are interested inr__ / n.

_ u%q*
A3p




Plotof Ivsr_ . /n;l {I|=
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Simulation Results

e The process was simulated using R Software

e The number of generations till which simulation
was carried out and value of A was varied

e For the results shown, we keep

A=pp=q=1



Simulation Results
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Simulation Results
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Future Work

e Variance to be calculated by assuming some
distribution (Poisson, Binomial, etc.)

¢ Inference problem can be studied

e The population can be discretized even further, so
as to give better approximation to human
population

* The model can be used as approximation to
continuous time branching processes with a
different probability of giving birth and dying at
different times

* Modelling some marketing phenomenon using this
model and checking how good the model fits
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