Criticality and Forefather distribution in a variant of Galton Watson Branching Process

Arnab Kumar Laha and Sumit Kumar Yadav

Structure of the Presentation

- Basic Ideas of Branching Processes
- Problem Description
- Theoretical Results
- Simulation Results
- Scope of Further Work
- Questions and Suggestions

Multi-type Branching Process

Criticality and Forefather distribution in a

Basic Ideas of Simple Branching Processes

- Particles or objects can generate objects similar to themselves
- A particle of $n^{\text {th }}$ generation produces offsprings which belong to $\mathrm{n}+{ }^{\text {th }}$ generation
- Essentially a Markov chain defined on non-negative integers
- A probability law is assigned for reproduction of offsprings
- All individuals follow this law independently of each other
- Conditional on the current generation, the generating function of the next generation can be determined

Problem Description

- Model the process in a way that mimics the real human population
- People can have discrete ages - 0, a,2a,3a,...ka
- We begin with one individual of age 0 in the $0^{\text {th }}$ generation
- Probability that an individual of age "i"a will survive in next generation is given by $\mathrm{P}_{\mathrm{i}, \mathrm{i}+1}$
- After age " k "a, individuals and their possible offsprings are not taken into consideration for the model
- An individual of age "i"a gives birth to finite number of individuals of age 0 with mean λ_{i}
- Thus, if we model the process using multitype branching process, we get the following mean matrix

Mean Matrix for the Process

$$
\left[\begin{array}{ccccccc}
0 & p_{01} & 0 & \cdots & \cdots & 0 & 0 \\
\lambda_{1} & 0 & p_{12} & \cdots & \cdots & 0 & 0 \\
\lambda_{2} & 0 & 0 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\lambda_{k-1} & 0 & 0 & \cdots & \cdots & 0 & p_{k-1, k} \\
\lambda_{k} & 0 & 0 & \cdots & \cdots & 0 & 0
\end{array}\right]
$$

Long run behaviour of the process

Usually, it is helpful to classify the process as sub-critical, critical or supercritical (Probability of extinction < I)
In multitype branching process, if eigenvalue of mean matrix >1, it implies process is super critical

We provide a proof of the intuitive condition that if one individual produces more than one individual on an average during it's entire life, it implies the process is super critical

- I.) $\lambda_{1} * \mathrm{p}_{01}+\lambda_{2} * \mathrm{P}_{01} * \mathrm{P}_{12}+\ldots . .+\lambda_{\mathrm{k}} * \mathrm{P}_{01} * \mathrm{P}_{12} * \cdots . * \mathrm{p}_{\mathrm{k}-1, \mathrm{k}}>\mathrm{I}$ is equivalent to eigenvalue of mean martix greater than I, hence supercritical
- 2.) $\lambda_{\mathbf{I}} * \mathrm{p}_{01}+\boldsymbol{\lambda}_{\mathbf{2}} * \mathrm{P}_{01} * \mathrm{P}_{12}+\ldots . .+\lambda_{\mathrm{k}} * \mathrm{P}_{01} * \mathrm{P}_{12} * \cdots . * \mathrm{p}_{\mathrm{k}-1, \mathrm{k}}<(=) \mathrm{I}$ is equivalent to eigenvalue of mean martix less than (equal to), hence subcritical (critical)

Forefathers

Question

- In a generation, how many individuals have a given number of forefathers??
Random variable $X_{i, j}^{n}=$ no. of individuals of age i in the $\mathrm{n}^{\text {th }}$ generation having j forefathers
- properties of the random variables $X_{i, j}^{n}$
- $E\left(X_{i, j}^{n}\right), \operatorname{Var}\left(\boldsymbol{X}_{i, j}^{n}\right), P\left(X_{i, j}^{n}=r\right)$ and so on
- Limiting behavior of these variables

Recurrence Relations for Expected Value

- Let us denote the expected number of individuals in the $\mathrm{n}^{\text {th }}$ generation of age "i", having j forefathers be denoted by $E_{i, j}^{n}=E\left(X_{i, j}^{n}\right)$
- $\mathrm{E}_{0, j+1}^{\mathrm{n}+1}=\lambda_{\mathrm{I}} * \mathrm{E}_{1, \mathrm{j}}^{\mathrm{n}}+\boldsymbol{\lambda}_{2} * \mathrm{E}_{2, \mathrm{j}}^{\mathrm{n}}+\ldots . .+\lambda_{\mathrm{k}} * \mathrm{E}_{\mathrm{k}, \mathrm{j}}^{\mathrm{n}}$
- $E_{1, j}^{n+1}=p_{01} * E_{0, j}^{n}$
- $E_{2, j}^{n+1}=p_{12} * E_{1, j}^{n}$
- $E_{3, j}^{n+1}=p_{23} * E_{2, j}^{n}$
:
!
- $E_{k, j}^{n+1}=p_{k-1, k} * E_{k-1, j}^{n}$
- The equations can be combined to obtain the following expression -
- $\mathrm{E}_{0, j+1}^{\mathrm{n}+1}=\lambda_{1} * \mathrm{p}_{01} * \mathrm{E}_{0, j}^{\mathrm{n}-1}+\lambda_{2} * \mathrm{P}_{01} * \mathrm{P}_{12} \mathrm{E}_{0, j}^{\mathrm{n}-2}+\ldots . .+\lambda_{\mathrm{k}} * \mathrm{P}_{01} * \mathrm{P}_{12} * \cdots \cdot * \mathrm{p}_{\mathrm{k}-1, \mathrm{k}} * \mathrm{E}_{0, j}^{\mathrm{n}-\mathrm{k}}$

Expected number of forefathers

- We derive an exact expression from this recurrence relation for $\boldsymbol{E}_{\mathbf{0 , j}}^{\boldsymbol{n}}$ which equals
- $\sum_{i_{1}, i_{2}, \ldots i_{k-2} \in C} \frac{j!}{\left(3 j-n+\sum_{l=1}^{k-1} l . i_{l}\right)!\left(\prod_{l=1}^{k-2} i_{l!}\right)} \lambda_{1}^{\prime}{ }^{\left(3 j-n+\sum_{l=1}^{k-2} l . i_{l}\right)} \lambda_{2}^{\prime}{ }^{\left(n-2 j-\sum_{l=1}^{k-2}(l+1), i_{l}\right)} \lambda_{3}^{i_{1}} \lambda_{4}^{i_{2}} \ldots \lambda_{k}^{i_{k-2}}$
- $\mathrm{C}=$
$\left\{i_{1}, i_{2}, \ldots i_{k-2}: i_{1} \geq 0, i_{2} \geq 0, \ldots i_{k-2} \geq 0,3 j-n+\sum_{l=1}^{k-2} l . i_{l} \geq 0, n-2 j-\sum_{l=1}^{k-2}(l+1) . i_{l} \geq 0\right\}$
- $\lambda^{\prime}{ }_{l}=\lambda_{l}{ }^{*} p_{01} * p_{12} * \cdots * p_{l-1, l}$

A smaller version of the problem

- Discretizing the population to start with a simple model ($\mathrm{k}=2, \mathrm{a}=20$)
- We assume that one generation is equal to 20 years
- There are three kinds of people in the population Age 0, Age 20 and Age 40
- We assume that Age 0 don't give birth, they turn to Age 20 after one generation with probability P
- Age 20 gives birth to Age 0 with mean λ, they turn Age 40 after one generation with probability q
- Age 40 gives birth to Age 0 with mean μ, they are then taken out of consideration for the model

Problem Description

- Thus, the problem can be formulated as a 3 type branching process with types being

$$
\text { a.) Age } 0 ; \text { b.) Age } 20 \text {; c.) Age } 40
$$

- Mean Matrix $\left(M=\left(m_{i j}\right)\right)$

$$
\left[\begin{array}{lll}
0 & p & 0 \\
\lambda & 0 & q \\
\mu & 0 & 0
\end{array}\right]
$$

Expectation Expression

- We just take type "Age 0" for illustration
- All other types can be easily derived from this
- Recurrence Relation :
- $E_{0, j+1}^{n+1}=\lambda * \mathrm{p} * E_{0, j}^{n-1}+\mu^{*} \mathrm{p}^{*} \mathrm{q}^{*} E_{0, j}^{n-2}$
- Note : To start the process, we assume that the $(0)^{\text {th }}$ generation contains one individual of Age 0

Expectation Expression
 - $\mathrm{E}_{0, \mathrm{r}}^{\mathrm{n}}={ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}-2 \mathrm{r}+1}(\lambda \mathrm{p})^{3 \mathrm{r}-\mathrm{n}-1}(\mu \mathrm{pq})^{\mathrm{n}-2 \mathrm{r}+1}$

- Note: we have not assumed any distribution, the only assumption made is that mean of the offspring distribution exists
- r varies from $[[n / 3]+1,[n / 2]]$
- Another quantity of interest could be to find where does the value of $\mathrm{E}_{0, \mathrm{r}}^{\mathrm{n}}$ attain it's maximum

Maximum number of forefathers

$-\frac{\mathrm{E}_{0, \mathrm{r}+1}^{\mathrm{n}}}{\mathrm{E}_{0, \mathrm{r}}^{\mathrm{n}}}$ tells us that for large n , the expression is unimodal with respect to r

- Let $r_{\text {max }}$ be the index for which the expected value of number of forefathers is maximum
- We are interested in $r_{\text {max }} / n$.
- Define a quantity $\mathrm{I}=\frac{\mu^{2} q^{2}}{\lambda^{3} p}$

Plot of I vs $r_{\text {max }} / \mathrm{n} ; \left\lvert\,\left\{\left\lvert\,=\frac{\mu^{2} q^{2}}{\lambda^{3} p}\right.\right\}\right.$

0	0.5
0.01	0.479
0.05	0.461
0.1	0.451
0.2	0.439
0.5	0.4235
0.8	0.415
0.9	0.413
1	0.4115
1.1	0.4099
1.2	0.408
1.5	0.4047
1.8	0.4017
2	0.4
3	0.39368
5	0.38624
10	0.37718
20	0.369
50	0.361
100	0.3557
	0.33333333

Simulation Results

- The process was simulated using R Software
- The number of generations till which simulation was carried out and value of $\boldsymbol{\lambda}$ was varied
- For the results shown, we keep

$$
\lambda=\mu, p=q=1
$$

Simulation Results

Simulation Results

Future Work

- Variance to be calculated by assuming some distribution (Poisson, Binomial, etc.)
- Inference problem can be studied
- The population can be discretized even further, so as to give better approximation to human population
- The model can be used as approximation to continuous time branching processes with a different probability of giving birth and dying at different times
- Modelling some marketing phenomenon using this model and checking how good the model fits

Thank you :)

