# STOCHASTIC FIXED POINTS on $D$ 

Uwe Roesler

- Weighted Branching Process
- Stochastic Fixed Points on $\mathbb{R}$
- Stochastic Fixed Points on $D$
- chasing all
- Example Quicksort process

If necessary

- Quicksort Process
- Discrete Partial Quicksort
- Convergence results


# WEIGHTED BRANCHING PROCESS 

Uwe Rösler
Tree $V$ with Ulam-Harris notation


Random weights $L_{e}: \Omega \rightarrow G$ on edges $e=(v, v i)$,
$(G, *)$ a semi group (with grave), often $G \subset H^{H}$ with composition

Random weights $L_{e}: \Omega \rightarrow G$ on pathes $e=(v, v w)$
Weighted Branching Process iff $\left(L_{v, v i}\right)_{i \in N}, v \in$ $V$ iid

Ex: BGW, BRW
Ex: Branching Processes or Markovian BP
Ex: BP with continuous time, $L_{v, v i}$ as life time,
Ex: Splitting processes,

- interval splitting
- Kolmogorov rock crushing
- application in biology (genealogical tree)
- algorithms (divide and conquer algorithms, Quicksort)

Ex: Kingman process as time transformed splitting process

WBP, dynamic is splitting a subset $A \subset I N$ into two

- choose $p \in[0,1]$ uniform distribution
- take iid Bernoulli $B_{i}, i \in I N$ to parameter $p$
- $A_{1}:=\left\{a \in A \mid B_{a}=1\right\} \quad A_{2}=A \backslash A_{1}$
- start with $\mathbb{N}$ on root

Symmetry of edges and vertices, $V \ni v \mapsto\left(L_{v, v i}\right)_{i}$
Skip root $\emptyset$, e.g. $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{N}^{*}, L_{v}=$ $L_{\emptyset, \emptyset v}$

## STOCHASTIC FIXED POINTS

Stochastic fixed point equation (SFPE)

$$
X \stackrel{\mathcal{D}}{\underline{D}} f\left(X_{1}, X_{2}, X_{3}, \ldots\right)
$$

where $X$ iid rvs and random variable $f$ independent of $X$-rvs.

The distribution of $X$ is a solution (SFP).
Why interested in distribution? Obviously exists versions of solution satisfying

$$
X=f\left(X_{1}, X_{2}, X_{3}, \ldots\right)
$$

Easier and.... For simplicity on $\mathbb{R}$ and $f$ linear or affin

$$
X \underline{\underline{\mathcal{D}}} \sum_{i \in N} A_{i} X_{i} \quad X \underline{\underline{\mathcal{D}}} \sum_{i \in N} A_{i} X_{i}+C
$$

homogeneous sum-type and inhomogeneous sum-type. $C$ stands for cost or toll.

Iterate inhomogeneous equation with equality

$$
\begin{aligned}
X & =C+\sum_{i \in N} A_{i} C_{i}+\sum_{i, j \in N} A_{i} A_{i, j} X_{i, j}=\ldots \\
& =R_{n}+\sum_{|v|=n} L_{v} X_{v} \\
R_{n} & =\sum_{|v|<n} L_{v} C_{v}
\end{aligned}
$$

Choose $\left(\left(L_{v, v i}\right)_{i \in N}, C_{v}\right), v \in V$ as iid. Show $R_{n} \rightarrow_{n} R$ a.e. (contraction method or martingale) and $\Sigma_{|v|=n} L_{v} X_{v} \rightarrow$ 0 disappears in distribution. Possible. Solution is $R$. Endogenous solution. Forward solution. Boundary at root. Probability.

Iterate homogeneous equation with equality

$$
X=\sum_{i, j \in N} A_{i} A_{i, j} X_{i, j}=\ldots=\sum_{|v|=n} L_{v} X_{v}
$$

For every $n$ exists versions of $X_{v},|v|=n$ satisfying the above with equality. But in the limit???? If we consider only distributions then by Kolmogorovs projective limit exists a projective distribution. That does the job.

Backward solution. Boundary at infinity. Measure theory.
non endogenous solutions, influence of boundary


## MOTIVATION for SFP

Ex: Divide and conquer algorithm provides

$$
X_{n+1} \stackrel{\mathcal{D}}{=} \sum_{i} A_{n, i} X_{n, i}+C_{n}
$$

assume ...

$$
X \stackrel{\mathcal{D}}{=} \sum_{i} A_{i} X_{i}+C
$$

Solve. Limiting object.
Ex: $\alpha$-stable-distributions $\alpha \in(0,2]$ (=Limit of sums of iid)
$X \alpha$-stable distribution iff $X \stackrel{\underline{\mathcal{D}}}{ } a X_{1}+b X_{2}+c$ for all $a, b \in \mathbb{R}$ satisfying $|a|^{\alpha}+|b|^{\alpha}=1$ and exists $c$.

Replace for all by some specific $a, b, c$. Is solution $\alpha$-stable? Unique solution? Alsmeyer-Roesler ' 05
Ex: Quicksort Result on asymptotic running time. Recursion for running time. Limit is SFPE.

$$
\begin{gathered}
X \stackrel{\mathcal{D}}{=} U X_{1}+(1-U) X_{2}+C(U) \\
C(x)=2 x \ln x+2(1-x) \ln (1-x)+1
\end{gathered}
$$

$L^{2}$-Solution Roesler 91,92.

## ALL SFPs on the REALS

Motivation for studying SFPs in its own arose by Quicksort. With contraction method invented there, 30-40 different divide and conquer algorithms could be treated, Neininger, Rüschendorf, ...'01, '02, '04, '06 ... Metrics Wasserstein and Zolotarev

Rueschendorf: General solution of inhomogeneous is sum of general solution of homogeneous and some special solution of inhomogeneous.

Fill and Janson '00 found all solutions for Quicksort SFE, symmetric 1-stable.

Jagers and Roesler '04 Supremums and infimums type equations

SFPE on $\mathbb{R}_{+}$and finitely many weights, Liggett, Liu
on $\mathbb{R}$ Caliebe '03, finite variance and finite first moment, (via triangle scheme)

Spitzmann: Partial results on $\mathbb{R}$ and connection with inhomogeneous solutions

General solution on $\mathbb{R}$ for finite number of weights, Alsmeier-Biggins-Meiners '12 Iff conditions for all solutions. These are mixtures of $\alpha$-stable distributions. $\alpha$ determined by $m(\alpha)=1$ where $\beta \rightarrow m(\beta)=E\left(\Sigma_{i}\left|L_{i}\right|^{\alpha}\right)$ Solutions are

$$
\begin{gathered}
R+W^{1 / \alpha} Y \\
W \stackrel{\underline{\underline{D}}}{\sum_{i}\left|L_{i}\right|^{\alpha} W_{i}}
\end{gathered}
$$

Solutions in $\mathbb{R}^{d}$ Mentemeier '12

## CADLAG-PROCESSES as SFPs

$X=(X(t))_{t \in[0,1]}$ with cadlag pathes

$$
X \stackrel{\mathcal{D}}{\underline{1}} f\left(X_{1}, X_{2}, X_{3}, \ldots\right)
$$

$f, X_{i}, i \in \mathbb{N}$ independent, every $X_{i}$ distributed as $X$ Restrict us to affin $f$

$$
X \underline{\underline{\mathcal{D}}} \sum_{j} T_{j} * X_{j}+C
$$

where $T_{j}$ is random operator on $D$, space and time transformation

Ex: Brownian motion

$$
X \stackrel{\mathcal{D}}{\underline{ }} \sqrt{U} X_{1}+\sqrt{1-U} X_{2}
$$

$U$ another independent rv, values in $[0,1]$ or

$$
X \stackrel{\mathcal{D}}{=}\left(U X_{1}\left(\frac{t}{U} \wedge 1\right)+(1-U) X_{2}\left(\frac{t-U}{1-U} \vee 0\right)\right)_{t}
$$

Ex: Cauchy

$$
X \stackrel{\mathcal{D}}{=} U X_{1}+(1-U) X_{2}
$$

solved by symmetric Cauchy(b) distribution, density $x \mapsto$ $\frac{b}{\pi\left(b^{2}+x^{2}\right)}$ and by constants. Or

$$
X \stackrel{\mathcal{D}}{=}\left(U^{2} X_{1}\left(\frac{t}{U} \wedge 1\right)+(1-U)^{2} X_{2}\left(\frac{t-U}{1-U} \vee 0\right)\right)_{t}
$$

Ex: Levy processes Analogous space-time transformation

Ex: Find Analysis of algorithms,
Gruebel-Roesler '96

$$
X \stackrel{\mathcal{D}}{\underline{D}}\left(\mathbb{1}_{t<U)} U X_{1}\left(\frac{t}{U}\right)+\mathbb{1}_{t \geq 1}(1-U) X_{2}\left(\frac{t-U}{1-U}\right)+1\right.
$$

$U$ uniformly distributed on $[0,1]$
Neininger-Sulzbach '12, general functional contraction method with Zolotarev metric on $D$

## QUICKSORT on the FLY

## Conrado Martinéz: Partial Quicksort

Input: sequence of length $n$
Output: $l$ smallest in order
Procedure: Recall Quicksort always for left most list with 2 or more elements

Publish first smallest then second smallest and so on

Observation: Algorithms does only necessary comparisons
$Y(n, l)$ number of comparisons for input $U_{\mid n}$
$X\left(n, \frac{l}{n}\right)=\frac{Y(n, l)-E Y(n, l)}{n}$
Theo Martinéz '04
Explicit formula for $E(Y(n, l))$

Theo Roesler '13
$X(n, \ldots)$ converges in Skorodhod metric almost surely to Quicksort process.

## SEARCH for EXAMPLES

Quicksort, limit SFP, All solutions Fill-Janson '00
Quicksort process on $D$ by contraction method
$X \stackrel{\mathcal{D}}{=}\left(\mathbb{1}_{t<U} U X_{1}\left(\frac{t}{U} \wedge 1\right)+(1-U) X_{2}\left(\frac{t-U}{1-U}\right)+C(U, t)\right)_{t}$
$U$ uniform independent Discrete to continuous process, Knof '06 for finite dimensional distribution, Ragab-Roesler '11, convergence in distribution, Roesler '13 point wise in Skorodhod

Again endogenous and non endogenous solutions

Better work with caglad functions (caglad $=$ left continuous with right limits)

Here functions on $[0,1]$ and $X(0)=0$

$$
X \stackrel{\underline{\mathcal{D}}}{\underline{2}}\left(U X_{1}\left(\frac{t}{U} \wedge 1\right)+(1-U) X_{2}\left(\frac{t-U}{1-U} \vee 0\right)+C(U, t)\right)_{t}
$$

## ALL CADLAG-PROCESSES as SFPs

Class of processes

$$
X \xlongequal{\underline{\mathcal{D}}} \sum_{j} A_{j} \cdot X_{j} \circ \varphi+C
$$

$A_{j}, C$ rvs $D$-valued, $\varphi$ random time change
How many solutions has the Quicksort process SFPE?
For Quicksort: sum of ordinary QD and symmetric Cauchy distribution, Fill-Janson '00

Theo Roesler '18
For Quicksort process: sum of QP and symmetric Cauchy process

$$
R+a \mathrm{Id}+b Y
$$

with $a, b \in \mathbb{R}, b \geq 0, R, Y$ independent, $R$ solves the inhomogeneous SFPE and $Y$ is a standard Cauchy process.

The standard Cauchy process solves the homogeneous SFPE

$$
X \stackrel{\mathcal{D}}{=}\left(U X_{1}\left(\frac{t}{U} \wedge 1\right)+(1-U) X_{2}\left(\frac{t-U}{1-U} \vee 0\right)\right)_{t}
$$

Idea of proof: Take view of equality of random variables. and iterate via WBP
$\left.Y_{v}=\left(\mathbb{1}_{U_{v}>t} U Y_{v 1}\left(1 \wedge \frac{t}{U_{v}}\right)+\mathbb{1}_{U_{v} \leq t}\left(1-U_{v}\right) Y_{v 2}\left(\frac{t-U_{v}}{1-U_{v}}\right)\right)\right)_{t}$
Consider equations at time $t=1$

$$
Y_{v}(1)=U_{v} Y_{v 1}(1)+\left(1-U_{v}\right) Y_{v 2}(1)
$$

If we know all $Y_{v}(1)$ then process $Y$ uniquely defined at the points $Y(t)$ where $t$ are the times (places) of the pivots. These are dense in the limit and by continuity the path of $Y$ is known.

## DIRTY RECURSIONS

Recursion for $Y$
$Y(x, l)=Y\left(x^{1}, l \wedge\left|x^{1}\right|\right)+Y\left(x^{2}, 0 \vee\left(l-\left|x^{1}\right|-1\right)\right)+|x|-1$ and then take $x=U_{\mid n}$. Recursion for $X(n)$

Real strength of contraction method shows up for 'dirty' recursions

$$
X(n) \stackrel{\mathcal{D}}{\underline{\mathcal{D}}} \sum_{i} L_{i}(I(n)) X_{i}(I(n))+C(I(n))
$$

$\left.\left(L_{i}(\cdot)\right)_{i}, C(\cdot), I(n)\right), X(j), j<n$ independent, $I(n)<$ $n$

Assume: $I(n) \rightarrow_{n} \infty, L_{i}(n) \rightarrow_{n} L_{i}, C(n) \rightarrow_{n} C$
Hope: $X(n) \rightarrow X$ and

$$
X \stackrel{\mathcal{D}}{\underline{\mathcal{D}}} \sum_{i} L_{i} X_{i}+C
$$

With 'nice' metric $d$ on distributions $d(X(n), X)$ function of $d\left(L_{i}(I(n)), L_{i}\right), d\left(X_{i}(I(n)), X_{i}\right), d\left(C\left(I_{n}\right.\right.$ shows convergence to 0 .

## CONVERGENCE of finite dimensional DISTRIBUTIONS

Theorem Martinez-Roesler
The one-dimensional distributions of $X(n)$ converge.

Theorem Ragab-Roesler
All finite dimensional distributions of $X(n)$ converge to the ones of the Quicksort process.

As consequence exists versions of $X(n)$ converging in Skorodhod metric to version of QP

Find algorithmic versions.
Theorem Roesler Let $U_{i}, i \in \mathbb{N}$, be independent uniformly distributed. Then $X(n, \cdot)$ converges almost surely to a version of the Quicksort process $X$ in Skorodhod metric on $D$.

Deterministic algorithm, but random input.

## SKORODHOD SPACE D

$D$ equipped with Skorodhod metric $d$
$d(f, g)=\inf \left\{\epsilon>0 \mid \exists \lambda \in \Lambda:\|f-g \circ \lambda\|_{\infty}<\epsilon,\|\lambda-\mathrm{id}\|_{\infty}<\epsilon\right\}$
where $\Lambda$ is the set of all bijective increasing functions $\lambda:[0,1] \rightarrow[0,1]$.


Big distance in supremum metric, small in Skorodhod metric

Theo: Alsmeyer-Biggins-Meiners
$N=\Sigma_{i} \mathbb{1}_{L_{i} \neq 0}<\infty$ a.e., distribution on $\mathbb{R}$
$-(0, \infty)$ is smallest closed multiplicative group generated by strictly positive factors
$-m(0)>1$
$-\exists \alpha \in(0,2]: m(\alpha)=1$
$-\forall 0<\beta<\alpha: 1<m(\beta)$
Then $\psi(t)=\Pi_{|v|=n} \psi_{v}\left(L_{v} t\right) L$-a.e. for all $t$ by martingale argument for Fourier transform. For given $L$

- infinitely divisible distribution,
- parameters in Levy representation satisfy fixed point equation,
- then stable.

$$
\ln \psi(t)=\left\{\begin{array}{clc}
-c W|t|^{\alpha}\left(1-i \beta \frac{t}{|t|} \tan \left(\frac{\pi \alpha}{2}\right)\right) & \text { if } & \alpha \notin\{1,2\} \\
i \gamma W t-c W|t| & \text { if } & \alpha=1 \\
-\sigma^{2} W t^{2} & \text { if } & \alpha=2
\end{array}\right.
$$

Remark: $N=\infty$ ?

## Mixtures of stable distributions

## INHOMOGENOUS SFE

Best result on the reals
Theo Meiners '10
Assumptions as before and on $C$
Set of all solution are distributions of

$$
W^{*}+W^{1 / \alpha} Y
$$

where
$-\left(W^{*}, W\right), Y$ are independent,

- $W^{*}$ is one solution of inhomogeneous SFE,
- $W \geq 0$ solves $W \stackrel{ }{\underline{\mathcal{D}}} \Sigma_{j}\left|L_{j}\right|^{\alpha} W_{j}$
$-Y$ has stable distribution to parameters

$$
(\gamma, c, \beta) \in\left\{\begin{array}{ccc}
\{0\} \times[-1,1] \times[0, \infty) & \text { if } & \alpha \notin\{1,2\} \\
R \times\{0\} \times[0, \infty) & \text { if } & \alpha=1 \\
\{0\} \times\{0\} \times[0, \infty) & \text { if } & \alpha=2
\end{array}\right.
$$

## SFE of SUPREMUM TYPE

On positive reals

$$
X \stackrel{\mathcal{D}}{=} \sup _{j} L_{j} X_{j}+C
$$

Jagers-Roesler, more than those expected by SFE of sum type

Rueschendorf, Alsmeyer
'complete' results

