Statistical inference for non-explosive branching processes based on partial observations

Ibrahim Rahimov

Department of Mathematics and Statistics, ZU, Dubai

April 10, WBPA2018

Outline

- 2 Partially observed process
- 3 Estimators
- 4 Consistency
- 5 Asymptotic Normality
- 6 Large number of ancestors
- Open problems

Process $W_n, n \ge 0, W_0 = 1$, defined by two families of independent, nonnegative integer valued random variables $\{X_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, \mathcal{N} = \{1, 2...\}, \mathcal{N}_0 = \mathcal{N} \cup \{0\}$ and $\{\nu_k, k \ge 1\}$ recursively as

$$W_{n+1} = \sum_{i=1}^{W_n} X_{ni} + \nu_{n+1}, \quad n \ge 0.$$
 (1)

Assume: X_{ni} have a common distribution for all n and i; Families $\{X_{ni}\}$ and $\{\nu_n\}$ are independent;

• $\{\nu_k, k \ge 1\}$ are independent but not necessarily identically distributed random variables.

Process $W_n, n \ge 0, W_0 = 1$, defined by two families of independent, nonnegative integer valued random variables $\{X_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, \mathcal{N} = \{1, 2...\}, \mathcal{N}_0 = \mathcal{N} \cup \{0\}$ and $\{\nu_k, k \ge 1\}$ recursively as

$$W_{n+1} = \sum_{i=1}^{W_n} X_{ni} + \nu_{n+1}, \quad n \ge 0.$$
 (1)

Assume: X_{ni} have a common distribution for all n and i; Families $\{X_{ni}\}$ and $\{\nu_n\}$ are independent;

 {ν_k, k ≥ 1} are independent but not necessarily identically distributed random variables.

Process $W_n, n \ge 0, W_0 = 1$, defined by two families of independent, nonnegative integer valued random variables $\{X_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, \mathcal{N} = \{1, 2...\}, \mathcal{N}_0 = \mathcal{N} \cup \{0\}$ and $\{\nu_k, k \ge 1\}$ recursively as

$$W_{n+1} = \sum_{i=1}^{W_n} X_{ni} + \nu_{n+1}, \quad n \ge 0.$$
 (1)

Assume: X_{ni} have a common distribution for all n and i; Families $\{X_{ni}\}$ and $\{\nu_n\}$ are independent;

• $\{\nu_k, k \ge 1\}$ are independent but not necessarily identically distributed random variables.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	

Let $m = EX_{ni}$ is the mean number of the offspring of a single individual and $\sigma^2 = Var(X_{ni})$.

The parameter of interest to be estimated is *m*.

	Outline		
	Introduction		
	Partially observed process		
	Estimators		
	Consistency		
	Asymptotic Normality		
	Large number of ancestors		
	Open problems		
Introduction			

Let $m = EX_{ni}$ is the mean number of the offspring of a single individual and $\sigma^2 = Var(X_{ni})$. The parameter of interest to be estimated is m.

Partially observed process

Let

$\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}\$ family of i.i.d. Bernoulli random variables with a probability of success θ

 $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, j = 1, 2$ are independent families of i.i.d. random variables taking nonnegative integer values and these families may follow different probability distributions for j = 1, 2. Assume also that families $\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ and $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ are independent for all values of n, i and j. We take

$$X_{ni} = X_{ni}^{(1)} (1 - \xi_{ni}) + X_{ni}^{(2)} \xi_{ni}.$$
 (2)

• In epidemic modeling: "Quarantine assumption".

Partially observed process

Let

 $\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ family of i.i.d. Bernoulli random variables with a probability of success θ $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, j = 1, 2$ are independent families of i.i.d. random variables taking nonnegative integer values and these families may follow different probability distributions for j = 1, 2. Assume also that families $\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ and $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ are independent for all values of n, i and j. We take

$$X_{ni} = X_{ni}^{(1)} (1 - \xi_{ni}) + X_{ni}^{(2)} \xi_{ni}.$$
 (2)

• In epidemic modeling: "Quarantine assumption".

Partially observed process

Let

 $\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}\$ family of i.i.d. Bernoulli random variables with a probability of success θ $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}, j = 1, 2$ are independent families of i.i.d. random variables taking nonnegative integer values and these families may follow different probability distributions for j = 1, 2. Assume also that families $\{\xi_{ni}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}\$ and

 $\{X_{ni}^{(j)}, (n, i) \in \mathcal{N}_0 \times \mathcal{N}\}$ are independent for all values of n, i and j. We take

$$X_{ni} = X_{ni}^{(1)}(1 - \xi_{ni}) + X_{ni}^{(2)}\xi_{ni}.$$
 (2)

• In epidemic modeling: "Quarantine assumption".

Partially observed process

Obtain new branching process with immigration $Z_0 = 1$,

$$Z_{n+1} = \sum_{i=1}^{Z_n} X_{ni}^{(1)}(1-\xi_{ni}) + \sum_{i=1}^{Z_n} X_{ni}^{(2)}\xi_{ni} + \nu_{n+1} \quad n \ge 0.$$

The partially observed branching process with immigration is now defined as

$$Y_{n+1} = \sum_{i=1}^{Z_n} \xi_{ni}, \ n \ge 0.$$

- "Binomial thinning".
- Inspection changes the offspring distribution of an individual.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Onon problems	

Partially observed process

References:

- Meester R., De Koning J., De Jong M., S., Diekmann O. (2002) Biometrics, **58**, 178-184.
- Meester R., Trapman P. (2006) Appl. Probab., 38, 1098-1115.
- Panaretos V., M.(2007) Partially observed branching processes for stochastic epidemics, J. Math. Biol., **54**, 645-668.
- Kvitkovičová A., Panaretos V., M.(2011) Adv. Appl. Probab. **43**, 1166-1190.
 - In all these papers the authors assume that $\nu_i = 0$ a.s. and $Z_n \to \infty$ as $n \to \infty$, which may happen only if m > 1.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Onon problems	

Partially observed process

References:

- Meester R., De Koning J., De Jong M., S., Diekmann O. (2002) Biometrics, **58**, 178-184.
- Meester R., Trapman P. (2006) Appl. Probab., 38, 1098-1115.
- Panaretos V., M.(2007) Partially observed branching processes for stochastic epidemics, J. Math. Biol., **54**, 645-668.
- Kvitkovičová A., Panaretos V., M.(2011) Adv. Appl. Probab. **43**, 1166-1190.
 - In all these papers the authors assume that $\nu_i = 0$ a.s. and $Z_n \to \infty$ as $n \to \infty$, which may happen only if m > 1.

Estimators

What is the sample? It is $\{(W_i, \nu_i), i = 1, 2, ...n\}$, if the process fully observed. The estimator for *m* given by (Nanthi(1979), Venkatarman (1982) and more..)

$$\hat{m}_n = \frac{\sum_{i=1}^n (W_i - \nu_i)}{\sum_{i=1}^n W_{i-1}}.$$
(3)

If the process is partially observed then the sample:

$$\{(Y_i, \eta_i), i = 1, 2, ..., n\},\$$

where η_i are the number of observed immigrants:

$$\eta_{n+1} = \sum_{j=1}^{\nu_n} \xi_{nj}, \ n \ge 1,$$

Estimators

Our estimators for m are given by

$$\hat{a}_n = \frac{\sum_{i=2}^{n+1} (Y_i - \eta_i)}{\sum_{i=1}^n Y_i}$$
(4)

based on the partial observations of the reproduction and the immigration processes.

We also consider modified estimators for m defined as follows

$$\hat{b}_n = \frac{\sum_{i=1}^{n_o} (Y_{2i+1} - \eta_{2i+1})}{\sum_{i=1}^{n_o} Y_{2i}}, \ \hat{c}_n = \frac{\sum_{i=1}^{n_e} (Y_{2i} - \eta_{2i})}{\sum_{i=1}^{n_o} Y_{2i-1}},$$
(5)

where $n_o = [(n-1)/2]$ and $n_e = [n/2]$.

• Why modified estimators? We talk about it little later.

Estimators

Our estimators for m are given by

$$\hat{a}_n = \frac{\sum_{i=2}^{n+1} (Y_i - \eta_i)}{\sum_{i=1}^n Y_i}$$
(4)

based on the partial observations of the reproduction and the immigration processes.

We also consider modified estimators for m defined as follows

$$\hat{b}_{n} = \frac{\sum_{i=1}^{n_{o}} (Y_{2i+1} - \eta_{2i+1})}{\sum_{i=1}^{n_{o}} Y_{2i}}, \ \hat{c}_{n} = \frac{\sum_{i=1}^{n_{e}} (Y_{2i} - \eta_{2i})}{\sum_{i=1}^{n_{e}} Y_{2i-1}},$$
(5)

where $n_o = [(n-1)/2]$ and $n_e = [n/2]$.

• Why modified estimators? We talk about it little later.

Estimators

Our estimators for m are given by

$$\hat{a}_n = \frac{\sum_{i=2}^{n+1} (Y_i - \eta_i)}{\sum_{i=1}^n Y_i}$$
(4)

based on the partial observations of the reproduction and the immigration processes.

We also consider modified estimators for m defined as follows

$$\hat{b}_{n} = \frac{\sum_{i=1}^{n_{o}} (Y_{2i+1} - \eta_{2i+1})}{\sum_{i=1}^{n_{o}} Y_{2i}}, \ \hat{c}_{n} = \frac{\sum_{i=1}^{n_{e}} (Y_{2i} - \eta_{2i})}{\sum_{i=1}^{n_{e}} Y_{2i-1}},$$
(5)

where $n_o = [(n-1)/2]$ and $n_e = [n/2]$.

• Why modified estimators? We talk about it little later.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Estimators	

In fully observed processes consistency and normality of the estimators depend on asymptotic properties of the process. So we look the problem from a little different point. Namely, we try to answer the following question.

- Which asymptotic properties of the process are essential for estimators to be consistent and asymptotically normal?
- No assumption on criticality.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Estimators	

In fully observed processes consistency and normality of the estimators depend on asymptotic properties of the process. So we look the problem from a little different point. Namely, we try to answer the following question.

- Which asymptotic properties of the process are essential for estimators to be consistent and asymptotically normal?
- No assumption on criticality.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Estimators	

In fully observed processes consistency and normality of the estimators depend on asymptotic properties of the process. So we look the problem from a little different point. Namely, we try to answer the following question.

- Which asymptotic properties of the process are essential for estimators to be consistent and asymptotically normal?
- No assumption on criticality.

Consistency

First we talk about consistency. We assume: A1. $m \in (0, \infty)$ and $\sigma^2 < \infty$. A2. The sum $\sum_{i=1}^{n} \nu_i \stackrel{d}{\to} \infty$ as $n \to \infty$ and almost surely $\limsup_{n \to \infty} \frac{\nu_n}{\sum_{i=1}^{n-1} \nu_i} < \infty.$

• About conditions A1 and A2.

Condition A1 is natural.

Condition A2. First part: The total number of immigrating individuals increases. Second part: excludes the situation when the number of individuals immigrating to a single generation predominates the total number of immigrants to all other generations.

Consistency

First we talk about consistency. We assume: A1. $m \in (0, \infty)$ and $\sigma^2 < \infty$. A2. The sum $\sum_{i=1}^{n} \nu_i \stackrel{d}{\to} \infty$ as $n \to \infty$ and almost surely $\limsup_{n \to \infty} \frac{\nu_n}{\sum_{i=1}^{n-1} \nu_i} < \infty.$

• About conditions A1 and A2.

Condition A1 is natural.

Condition A2. First part: The total number of immigrating individuals increases. Second part: excludes the situation when the number of individuals immigrating to a single generation predominates the total number of immigrants to all other generations.

Consistency

First we talk about consistency. We assume: A1. $m \in (0, \infty)$ and $\sigma^2 < \infty$. A2. The sum $\sum_{i=1}^{n} \nu_i \stackrel{d}{\to} \infty$ as $n \to \infty$ and almost surely $\limsup_{n \to \infty} \frac{\nu_n}{\sum_{i=1}^{n-1} \nu_i} < \infty.$

• About conditions A1 and A2.

Condition A1 is natural.

Condition A2. First part: The total number of immigrating individuals increases. Second part: excludes the situation when the number of individuals immigrating to a single generation predominates the total number of immigrants to all other generations.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Consistency	

The following theorem holds.

Theorem 1. If conditions A1 and A2 are satisfied, then \hat{a}_n defined in (4) is a strongly consistent estimator for m.

We now consider the situations when conditions of Theorem 1 are fulfilled.

	Outline	
	Introduction	
Part	tially observed process	
	Estimators	
	Consistency	
	Asymptotic Normality	
Larg	e number of ancestors	
	Open problems	
Consistency		

The following theorem holds.

Theorem 1. If conditions A1 and A2 are satisfied, then \hat{a}_n defined in (4) is a strongly consistent estimator for m.

We now consider the situations when conditions of Theorem 1 are fulfilled.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Asymptotic Normality Large number of ancestors	
Asymptotic Normality Large number of ancestors	

Examples of application.

1. Stationary immigration.

Strong Law of Large numbers: $\sum_{i=1}^{n} \nu_i \xrightarrow{d} \infty$ as $n \to \infty$ whenever $\lambda_1 \in (0, \infty)$, where $\lambda_i = E\nu_i$.

Also: This fact and again SLLN: $\nu_n/n \to 0$ a.s. as $n \to \infty$. Thus condition A2 is also satisfied.

Corollary 1. If the immigration is stationary, $m \in (0, \infty)$, $\sigma^2 < \infty$ and $\lambda_1 \in (0, \infty)$, then \hat{a}_n is a strongly consistent estimator for m.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Consistency	

- 2. Non-Stationary immigration.
 - Let R_a the set of regularly varying functions with exponent a.
 - Denote: λ_i and γ_i^2 are mean and variance of ν_i respectively.
 - Assume that: $(\lambda_i)_{i=1}^{\infty} \in R_{\lambda}$ and $(\gamma_i^2)_{i=1}^{\infty} \in R_{\gamma}$ for some $\lambda, \gamma \ge 0$.

Notation: $\Lambda_n = \sum_{i=1}^n \lambda_i$, $\Gamma_n = \sum_{i=1}^n \gamma_i^2$.

Theorem 2. If $m \in (0, \infty)$, $\sigma^2 < \infty$, $\Lambda_n \to \infty$, $\Gamma_n = o(\Lambda_n^2)$ as $n \to \infty$ and series $\sum_{i=1}^{\infty} \gamma_i^2 \Lambda_{i-1}^{-2}$ is convergent, then \hat{a}_n is a strongly consistent estimator for m.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Consistency	

- 2. Non-Stationary immigration.
 - Let R_a the set of regularly varying functions with exponent a.
 - Denote: λ_i and γ_i^2 are mean and variance of ν_i respectively.
 - Assume that: $(\lambda_i)_{i=1}^{\infty} \in R_{\lambda}$ and $(\gamma_i^2)_{i=1}^{\infty} \in R_{\gamma}$ for some $\lambda, \gamma \ge 0$.

Notation: $\Lambda_n = \sum_{i=1}^n \lambda_i$, $\Gamma_n = \sum_{i=1}^n \gamma_i^2$.

Theorem 2. If $m \in (0, \infty)$, $\sigma^2 < \infty$, $\Lambda_n \to \infty$, $\Gamma_n = o(\Lambda_n^2)$ as $n \to \infty$ and series $\sum_{i=1}^{\infty} \gamma_i^2 \Lambda_{i-1}^{-2}$ is convergent, then \hat{a}_n is a strongly consistent estimator for m.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Consistency	

Remarks. Conditions of Theorem 2 are satisfied if a) $\gamma_i^2, i \ge 1$ are uniformly bounded and $\Lambda_n \to \infty$. b) Another situation when the conditions hold is $\gamma_n^2 = O(\lambda_n)$. c) Let now $\gamma_n^2 = \lambda_n \Lambda_{n-1}^{\delta}$ for some $0 \le \delta < 1$. Since $2 - \delta > 1$, using properties of regularly varying functions one can show that $\Gamma_n = o(\Lambda_n^2)$. On the other hand series $\sum_{i=1}^{\infty} \gamma_i^2 \Lambda_{i-1}^{-2} = \sum_{i=1}^{\infty} \lambda_i \Lambda_{i-1}^{\delta-2}$ is convergent due to Dini's theorem (Knop (1956), p. 125).

	Outline	
	Introduction	
	Partially observed process	
	Estimators	
	Consistency	
	Asymptotic Normality	
	Large number of ancestors	
	Onon problems	
Consistency		

Example 1. Let $\nu_k, k \ge 1$ be Poisson with mean λ_k . In this case trivially $\Gamma_n = o(\Lambda_n^2)$ as $n \to \infty$. It again follows from Dini's theorem that series $\sum_{i=1}^{\infty} \lambda_i \Lambda_{i-1}^{-2}$ is convergent and we obtain the following result from Theorem 4. **Corollary 2.** If $m \in (0, \infty)$, $\sigma^2 < \infty$, and $\nu_k, k \ge 1$ is Poisson with mean λ_k such that $\Lambda_n \to \infty$ as $n \to \infty$, then \hat{a}_n is a strongly consistent estimator for m.

Asymptotic Normality

- Key properties in fully observed process: W_n − mW_{n-1} − λ_n is a martingale difference or {W_n, n ≥ 0} is a Markov chain.
- For the partially observed process Y_n these properties do not hold. Therefore it was not possible to get asymptotic normality of the original estimator â_n. We modify it using "skipping one index" method and consider estimators b̂_n and ĉ_n.
- The "skipping" idea belongs Meester R., Trapman P. (2006). However their result: Normed difference of the estimator and parameter is asymptotically sum of three normal random variables (not independent).

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Asymptotic Normality	

- In Kvitkovičová A., Panaretos V., M.(2011): In the proof of normality they use Scott's Central Limit theorem on convergence of a random sequence (with martingale difference components) to a Gaussian measure.
- Scott D. J. (1978). A central limit theorem for martingales and an application to branching processes. Stoch. Process. Appl. **6**, 241-252.

Asymptotic Normality

Our representation:

$$(\hat{b}_n - m) \sum_{i=1}^{n_o} Y_{2i} = \sum_{k=1}^{n_o} \sum_{i=1}^{Z_{2k-1}} \omega_{ki}, \qquad (6)$$

where $n_o = [(n-1)/2]$ and $\omega_{ki} = \sum_{j=1}^{X_{2k-1i}} \rho_{2k,ij} - m\xi_{2k-1i}$, $i \in \mathcal{N}$. Here $\rho_{kij}, (k, i, j) \in \mathcal{N}^3$ are i.i.d. Bernoulli random variables with the probability of success θ .

• If not modified estimator, $(\hat{a}_n - m) \sum_{i=1}^n Y_i$ and these random variables are not independent.

Asymptotic Normality

A3. There exists a sequence of positive integers $\{c_k, k \ge 1\}$ and constant $C \in (0, \infty)$ such that $c_n \to 0$ as $n \to \infty$ and

$$c_n\sum_{i=1}^n W_{2i-1} \stackrel{P}{
ightarrow} C.$$

A4. There exists a sequence of positive integers $\{c_k, k \ge 1\}$ and constant $C \in (0, \infty)$ such that $c_n \to 0$ as $n \to \infty$ and

$$c_n \sum_{i=1}^n W_{2i} \stackrel{P}{\to} C.$$

Asymptotic Normality

Theorem 3.

a) If conditions A1 and A3 are satisfied, then

$$(\sum_{k=1}^{n_o} Y_{2k})^{1/2} (\hat{b}_n - m) \stackrel{d}{\to} N(0, b^2)$$

as $n \to \infty$, where $b^2 = m(1 - \theta) + m^2(1 + \theta) + \sigma^2 \theta - 2m\theta E X_{ki}^{(2)}$. b) If conditions A1 and A4 are satisfied, then as $n \to \infty$

$$(\sum_{k=1}^{n_e} Y_{2k-1})^{1/2} (\hat{c}_n - m) \stackrel{d}{\to} N(0, b^2).$$

Asymptotic Normality

Theorem 3.

a) If conditions A1 and A3 are satisfied, then

$$(\sum_{k=1}^{n_o} Y_{2k})^{1/2} (\hat{b}_n - m) \stackrel{d}{\to} N(0, b^2)$$

as $n \to \infty$, where $b^2 = m(1 - \theta) + m^2(1 + \theta) + \sigma^2 \theta - 2m\theta E X_{ki}^{(2)}$. b) If conditions A1 and A4 are satisfied, then as $n \to \infty$

$$(\sum_{k=1}^{n_e} Y_{2k-1})^{1/2} (\hat{c}_n - m) \stackrel{d}{\to} N(0, b^2).$$

Asymptotic Normality

There are examples of processes for which the conditions of Theorem 3 are satisfied.

a) Processes with the stationary immigration in subcritical case.

b) Processes with non-stationary immigration in the subcritical, critical and supercritical cases.

Asymptotic Normality

There are examples of processes for which the conditions of Theorem 3 are satisfied.

a) Processes with the stationary immigration in subcritical case.

b) Processes with non-stationary immigration in the subcritical, critical and supercritical cases.

Asymptotic Normality

There are examples of processes for which the conditions of Theorem 3 are satisfied.

a) Processes with the stationary immigration in subcritical case.

b) Processes with non-stationary immigration in the subcritical, critical and supercritical cases.

Asymptotic Normality

A. Pakes (1971): if m < 1 and $\lambda_1 \in (0, \infty)$, then $n^{-1} \sum_{i=0}^{n} W_i \to \lambda_1/(1-m)$ a.s. as $n \to \infty$. So one can prove that condition A3 is satisfied. Hence we have the following result from Theorems 2 and 3.

Theorem 4. If the immigration is stationary, m < 1, $\sigma^2 < \infty$ and $\lambda_1 \in (0, \infty)$, then \hat{a}_n is a strongly consistent estimator for m and as $n \to \infty$

$$\sqrt{n}(\hat{b}_n-m) \stackrel{d}{\rightarrow} N(0, \frac{2b^2(1-m)}{\lambda_1\theta})$$

Asymptotic Normality

A. Pakes (1971): if m < 1 and $\lambda_1 \in (0, \infty)$, then $n^{-1} \sum_{i=0}^{n} W_i \to \lambda_1/(1-m)$ a.s. as $n \to \infty$. So one can prove that condition A3 is satisfied. Hence we have the following result from Theorems 2 and 3.

Theorem 4. If the immigration is stationary, m < 1, $\sigma^2 < \infty$ and $\lambda_1 \in (0, \infty)$, then \hat{a}_n is a strongly consistent estimator for m and as $n \to \infty$

$$\sqrt{n}(\hat{b}_n-m)\stackrel{d}{
ightarrow} N(0,rac{2b^2(1-m)}{\lambda_1 heta}).$$

Asymptotic Normality

Non-stationary immigration: (λ_i)[∞]_{i=1} ∈ R_λ and (γ²_i)[∞]_{i=1} ∈ R_γ for some λ, γ ≥ 0. Denote A(n) = ∑ⁿ_{i=1} λ_imⁿ⁻ⁱ.

Theorem 5. If m < 1, $\sigma^2 < \infty$, $\lambda_n \to \infty$ and $\gamma_n^2 = o(\lambda_n^2)$ as $n \to \infty$, then as $n \to \infty$

$$\sqrt{nA(n)}(\hat{b}_n-m) \stackrel{d}{\rightarrow} N(0,\frac{2b^2(1+\lambda)}{\theta}).$$

Theorem 6. If m = 1, $\sigma^2 < \infty$, $\lambda_n \to \infty$ and $\gamma_n^2 = o(n\lambda_n^2)$ as $n \to \infty$, then as $n \to \infty$

$$\sqrt{nA(n)}(\hat{b}_n-m) \stackrel{d}{\rightarrow} N(0, \frac{2b^2(2+\lambda)}{\theta}).$$

• There is Theorem 7 related to supercritical case.

Asymptotic Normality

Non-stationary immigration: (λ_i)[∞]_{i=1} ∈ R_λ and (γ²_i)[∞]_{i=1} ∈ R_γ for some λ, γ ≥ 0. Denote A(n) = ∑ⁿ_{i=1} λ_imⁿ⁻ⁱ.
 Theorem 5. If m < 1, σ² < ∞, λ_n → ∞ and γ²_n = o(λ²_n) as n → ∞, then as n → ∞

$$\sqrt{nA(n)}(\hat{b}_n-m)\stackrel{d}{
ightarrow} N(0,rac{2b^2(1+\lambda)}{ heta}).$$

Theorem 6. If m = 1, $\sigma^2 < \infty$, $\lambda_n \to \infty$ and $\gamma_n^2 = o(n\lambda_n^2)$ as $n \to \infty$, then as $n \to \infty$

$$\sqrt{nA(n)}(\hat{b}_n-m) \stackrel{d}{\rightarrow} N(0, \frac{2b^2(2+\lambda)}{\theta}).$$

• There is Theorem 7 related to supercritical case.

Asymptotic Normality

Non-stationary immigration: (λ_i)[∞]_{i=1} ∈ R_λ and (γ²_i)[∞]_{i=1} ∈ R_γ for some λ, γ ≥ 0. Denote A(n) = ∑ⁿ_{i=1} λ_imⁿ⁻ⁱ.
 Theorem 5. If m < 1, σ² < ∞, λ_n → ∞ and γ²_n = o(λ²_n) as n → ∞, then as n → ∞

$$\sqrt{nA(n)}(\hat{b}_n-m)\stackrel{d}{\rightarrow} N(0,\frac{2b^2(1+\lambda)}{\theta}).$$

Theorem 6. If m = 1, $\sigma^2 < \infty$, $\lambda_n \to \infty$ and $\gamma_n^2 = o(n\lambda_n^2)$ as $n \to \infty$, then as $n \to \infty$

$$\sqrt{nA(n)}(\hat{b}_n-m) \stackrel{d}{\rightarrow} N(0, \frac{2b^2(2+\lambda)}{\theta}).$$

• There is **Theorem 7** related to supercritical case.

Large number of ancestors

- No immigration: $\nu_n = 0, n \ge 0.$
- Large number of initial individuals: $W_0 = n$.
- Yanev, N.M., 1976. On the statistics of branching processes. Theory Probab. Appl., 20, 612-622.

To estimate the offspring mean based on partial observations, we denote the partially observed branching process started by n initial ancestors by $\mu_n(t)$, $t \ge 0$, $n \ge 1$ and define estimator

$$\hat{a}_n(t) = \frac{\sum_{k=2}^{t+1} \mu_n(k)}{\sum_{k=2}^{t+1} \mu_n(k-1)}.$$
(7)

Large number of ancestors

- No immigration: $\nu_n = 0, n \ge 0.$
- Large number of initial individuals: $W_0 = n$.
- Yanev, N.M., 1976. On the statistics of branching processes. Theory Probab. Appl., 20, 612-622.

To estimate the offspring mean based on partial observations, we denote the partially observed branching process started by n initial ancestors by $\mu_n(t)$, $t \ge 0$, $n \ge 1$ and define estimator

$$\hat{a}_n(t) = \frac{\sum_{k=2}^{t+1} \mu_n(k)}{\sum_{k=2}^{t+1} \mu_n(k-1)}.$$
(7)

Large number of ancestors

- No immigration: $\nu_n = 0, n \ge 0.$
- Large number of initial individuals: $W_0 = n$.
- Yanev, N.M., 1976. On the statistics of branching processes. Theory Probab. Appl., 20, 612-622.

To estimate the offspring mean based on partial observations, we denote the partially observed branching process started by n initial ancestors by $\mu_n(t)$, $t \ge 0$, $n \ge 1$ and define estimator

$$\hat{a}_n(t) = \frac{\sum_{k=2}^{t+1} \mu_n(k)}{\sum_{k=2}^{t+1} \mu_n(k-1)}.$$
(7)

We provide only the result on the consistency of this estimator.

Theorem 8. a) If m < 1, then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$. b) If m=1 then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$ such that $t/n \rightarrow 0$.

• There are results related to asymptotic normality of the estimator. As before, the asymptotic normality holds for the modified estimators only.

We provide only the result on the consistency of this estimator.

Theorem 8. a) If m < 1, then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$. b) If m=1 then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$ such that $t/n \rightarrow 0$.

• There are results related to asymptotic normality of the estimator. As before, the asymptotic normality holds for the modified estimators only.

We provide only the result on the consistency of this estimator.

Theorem 8. a) If m < 1, then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$. b) If m=1 then $\hat{a}_n(t)$ is a consistent estimator for m i.e. $\hat{a}_n(t) \rightarrow m$ in probability as $n, t \rightarrow \infty$ such that $t/n \rightarrow 0$.

• There are results related to asymptotic normality of the estimator. As before, the asymptotic normality holds for the modified estimators only.

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Open problems	

- Open problems are... OPEN. $\ddot{-}$
- Of course incorporating the partial observation of a branching process will lead to more realistic models. However will also lead to major complications.

Thank you

Outline	
Introduction	
Partially observed process	
Estimators	
Consistency	
Asymptotic Normality	
Large number of ancestors	
Open problems	
Open problems	

- Open problems are... OPEN. $\ddot{-}$
- Of course incorporating the partial observation of a branching process will lead to more realistic models. However will also lead to major complications.

Thank you