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Background selection
sb, sd = selective advantage, disadvantage

u = genomic mutation rate

number of deleterious mutations on each genome Z ∼ P (u/sd)

average fitness of the population = E
[
(1− sd)

Z
]
= e−u

SELECTION
Case 1

SELECTION
Case 2

(1+ sb) (1− sd) < e−u

loss of the beneficial mutation
(1+ sb) (1− sd) > e−u

hitchhiking of deleterious mutations
4 / 24



Background selection
What happens at high mutation rate?

(1+ sb) (1− sd) > e−u

beneficial mutation is lost despite initially having a net selective advantage.

This is due to what we call lineage contamination.
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Lineage contamination
Random accumulation of deleterious mutations in a growing lineage
founded by the occurrence of a single beneficial mutation in an otherwise
homogeneous population (wild-type population starting with N lineages).

Initial population size N + 1
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Lineage contamination model

binary reproduction: individuals produce 2 descendants
accumulation of deleterious mutations: a descendant of an individual
carrying i deleterious mutations may accumulate k additional
mutations with probability e−uuk/k!

fitness: such a descendant is then selected with probability
proportional to its fitness wi+k = (1+ sb) (1− sd)

i+k
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Multitype branching process
a type {0, 1, . . .} corresponds to the number of accumulated
deleterious mutations
each individual of type i produces a total number of 0, 1 or 2
descendants of types {i , i + 1, . . .}

Offspring generating function for the type i : for all r ∈ [0, 1]N

fi (r) = Eei

[
rX1
]
=
(
1−

∑
k>0

e−uuk

k!

wi+k

2
(1− ri+k)

)2

Mean matrix: upper triangular

mij = Eei [X1,j ] =
wje
−uuj−i

(j − i)!

wild-type population (Xt)t∈N
I X0 = (N, 0, . . .) I no selective advantage, sb = 0

beneficial lineage (Xb
t )t∈N

I Xb
0 = (1, 0, . . .) I selective advantage, sb > 0
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Goals

Extinction probability of the beneficial lineage, as a function of
mutation rate
Relative fitness dynamics of the beneficial lineage within the wild-type
population
Mutational meltdown of the beneficial lineage (timing of sequential
extinctions of fittest classes)

Mathematical challenges
branching process with infinite set of types N
no back mutations =⇒ reducible process
studied quantities not classical in the literature
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Mean evolution of the population size
Mean population size at time t ∈ N:

E
(
|Xb

t |
)
= (1+ sb)

t e−ute
u(1−(1−sd )

t)(1−sd )
sd

Figure. Evolution over time of the mean size of a beneficial lineage,
with sd = 0.03 and sb = 0.5. 12 / 24



Extinction probability

Generally, if (Xt)t is reducible with an infinite set of types,

pglobext = P
(

lim
t→∞

|Xt | = 0
)
6 P

(
∀i ∈ N, lim

t→∞
Xt,i = 0

)
= ppartext .

Proposition
Partial vs. global extinction

ppartext = pglobext = pext .

Proposition
Extinction threshold

pext = 1 ⇐⇒ u > ln (1+ sb) .

Proof. For branching random walks1

ppartext < 1 ⇐⇒ lim sup
t∈N

(
m

(t)
0,0

) 1
t
> 1 ⇐⇒ e−µ (1+ sb) > 1.

1Zucca (2011)
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Extinction probability
Obtained2 as the limit of the extinction probability of a branching process (X(D)

t )t
with a finite number of types D

= (Xt)t in which none of the individuals with more than D deleterious
mutations are counted

= branching process with set of types {0, . . . ,D} and offspring generating
functions fi (r0, . . . , rD , 1, 1, . . .)

pext = lim
D→∞

P
(
lim
t→∞

|X(D)
t | = 0

)
Let D0 = max{i ∈ N : e−uwi > 1}.

Proposition

pext = P
(
lim
t→∞

|X(D0)
t | = 0

)
,

and only D0 + 1 equations are required to computea pext .

aFirst coordinate of the smallest non-negative fixed point of the offspring
generating function with D0 + 1 types

2Hautphenne et al (2013) 14 / 24



Survival probability
Proposition
The survival probability psvl = 1− pext is a monotonically decreasing
function of sd which reaches its minimum at sd = sc = 1− eu/ (1+ sb).
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Figure. Survival probability psvl of a beneficial lineage, with sb = 0.1.
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Relative fitness

Absolute fitnesses

W
(
Xb
t

)
=
∑
i∈N

wi

X b
t,i

|Xb
t |
, t < T b

ext ,

Relative fitness
W
(
Xb
t

)
W
(
Xb
t + Xt

) .
How do the fitnesses of the adaptive sub-population and of the large
wild-type population compare?

Intuition
Since both populations are accumulating deleterious mutations at the same
rate, the relative fitness should not depend on this deleterious mutation
rate.
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Relative Fitness
Large population approximation

Proposition

lim
N→∞

W
(
Xb
t

)
W
(
Xb
t + Xt

) a.s.
= eu(1−sd )(1−(1−sd )

t)W
(
Xb
t

)
.

Proof. Branching property for (Xt)t (N independent copies of a process
starting with one individual) and strong law of large numbers:

lim
N→∞

1
W
(
Xb
t + Xt

) = lim
N→∞

|Xb
t |+ |Xt |∑

i∈N (1− sd)
i
(
(1+ sb)X

b
t,i + Xt,i

)
a.s.
=

E (|Xt |)∑
i∈N (1− sd)

i E (Xt,i )
.

�

17 / 24



Relative Fitness
Long-time limit of the mean relative fitness

Proposition

lim
t→+∞

E

(
W
(
Xb
t

)
W
(
Xb
t + Xt

)1t<T b
ext

)
= (1+ sb) psvl .

Proof. Property for (finite-type) reducible branching processes3 with largest
eigenvalue >1:

lim
t→∞

etu (1+ sb)
−t Xb

t
a.s.
= W v,

where

v =
(
1, u(1−sd )sd

, 1
2!

(
u(1−sd )

sd

)2
, . . .

)
is the left eigenvector of the mean

matrix M for its maximal eigenvalue e−u (1+ sb),
W is a one-dimensional random variable with P (W > 0) = psvl .

�
3Kesten and Stigum, 1967
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Relative Fitness
We obtain upper and lower bounds for the mean relative fitness which only
involve computable quantities of the processes (|Xb

t |)t∈N and (X b
t,i )t∈N.

E(r |Xb
t |) obtained by t iterations of f0 (r , r , . . .)

E(rX
b
t,i ) obtained by t iterations of f0 (1, . . . , 1, r , 1, . . .)

Figure. Time evolution of the mean relative fitness (sb = 0.1, sd = 0.03). 19 / 24



Mutational meltdown
Extinction time of the fittest class
Ti := inf{t > 0 : Xt,i = 0} conditionally on X0 = ni the (rounded) average
composition of the population at Ti−1.

T0 T1 T2

type 0

type 1

...

...

n1,1

n1,2

n0,0 n2,2

Timing of sequential extinction of fittest classes

En0 (T0) , En1 (T1) , . . .
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Mutational meltdown

Ti
L∼ extinction time of the monotype branching process (Yt)t>0 with

offspring generating function g(r) = fi (1, . . . , 1, r , 1, . . .) and Y0 = ni ,i

φt (r) = E1
(
rYt
)
solution of the Ricatti equation

∂

∂t
φt (r) = g (φt (r))− φt (r) , φt (0) = r .

Proposition

For each i ∈ N and x ∈ NN with xj = 0 for j > i ,
the extinction time cumulative distribution Px (Ti 6 t) ,
the mean extinction time Ex (Ti ),
the mean population composition at the extinction time Ex (XTi ,j),

can be computed explicitly.

21 / 24



Mutational meltdown
Sequence of the mean extinction times of the fittest classes (u = 0.1, sd = 0.03)
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Effect on adaptive dynamics
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Thank you for your attention!
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