Can excessive mutation prevent adaptive evolution? A multitype branching process model.

Sophie Pénisson Université Paris-Est Créteil

joint work with Philip GERRISH and Paul SNIEGOWSKI Georgia Institute of Technology and University of Pennsylvania

IV Workshop on Branching Processes and their Applications University of Extremadura 10th-13th April 2018

1 Biological context

- Background selection
- Lineage contamination

Stochastic model

3 Results

- Mean evolution of the population size
- Extinction probability
- Relative fitness
- Mutational meltdown
- Effect on adaptive dynamics

Background selection

- s_b , s_d = selective advantage, disadvantage
- *u* = genomic mutation rate
- number of deleterious mutations on each genome $Z \sim \mathcal{P}(u/s_d)$ average fitness of the population $= \mathbb{E}\left[(1-s_d)^Z\right] = e^{-u}$

 $\left(1+s_b
ight)\left(1-s_d
ight) < e^{-u}$ loss of the beneficial mutation

$\left(1+s_b ight)\left(1-rac{s_d}{s_d} ight)>e^{-u}$ hitchhiking of deleterious mutations

Background selection

What happens at high mutation rate?

$$\left(1+s_b\right)\left(1-s_d\right) > e^{-u}$$

beneficial mutation is lost despite initially having a net selective advantage.

This is due to what we call lineage contamination.

Lineage contamination

Random accumulation of deleterious mutations in a growing lineage founded by the occurrence of a single beneficial mutation in an otherwise homogeneous population (wild-type population starting with N lineages).

Biological context

- Background selection
- Lineage contamination

2 Stochastic model

Results

- Mean evolution of the population size
- Extinction probability
- Relative fitness
- Mutational meltdown
- Effect on adaptive dynamics

Lineage contamination model

- binary reproduction: individuals produce 2 descendants
- accumulation of deleterious mutations: a descendant of an individual carrying *i* deleterious mutations may accumulate *k* additional mutations with probability e^{-u}u^k/k!
- fitness: such a descendant is then selected with probability proportional to its fitness $w_{i+k} = (1 + s_b) (1 s_d)^{i+k}$

Multitype branching process

- a type $\{0,1,\ldots\}$ corresponds to the number of accumulated deleterious mutations
- each individual of type *i* produces a total number of 0, 1 or 2 descendants of types {*i*, *i* + 1,...}

Offspring generating function for the type *i*: for all $\mathbf{r} \in [0, 1]^{\mathbb{N}}$

$$f_{i}\left(\mathbf{r}\right) = \mathbb{E}_{\mathbf{e}_{i}}\left[\mathbf{r}^{\mathbf{X}_{1}}\right] = \left(1 - \sum_{k \geq 0} \frac{e^{-u}u^{k}}{k!} \frac{w_{i+k}}{2} \left(1 - r_{i+k}\right)\right)^{2}$$

Mean matrix: upper triangular

$$m_{ij} = \mathbb{E}_{\mathbf{e}_i} \left[X_{1,j} \right] = rac{w_j e^{-u} u^{j-i}}{(j-i)!}$$

- wild-type population $(X_t)_{t \in \mathbb{N}}$
 - $\blacktriangleright \mathbf{X}_0 = (N, 0, \ldots)$
- beneficial lineage $(\mathsf{X}^b_t)_{t\in\mathbb{N}}$
 - $X_0^b = (1, 0, \ldots)$

- no selective advantage, $s_b = 0$
- selective advantage, s_b > 0

Goals

- Extinction probability of the beneficial lineage, as a function of mutation rate
- Relative fitness dynamics of the beneficial lineage within the wild-type population
- Mutational meltdown of the beneficial lineage (timing of sequential extinctions of fittest classes)

Mathematical challenges

- \bullet branching process with infinite set of types $\mathbb N$
- no back mutations \implies reducible process
- studied quantities not classical in the literature

Biological context

- Background selection
- Lineage contamination

2 Stochastic model

3 Results

- Mean evolution of the population size
- Extinction probability
- Relative fitness
- Mutational meltdown
- Effect on adaptive dynamics

Mean evolution of the population size

Mean population size at time $t \in \mathbb{N}$: $\mathbb{E}\left(|\mathbf{X}_{t}^{b}|\right) = (1 + s_{b})^{t} e^{-ut} e^{\frac{u\left(1 - (1 - s_{d})^{t}\right)(1 - s_{d})}{s_{d}}}$

Figure. Evolution over time of the mean size of a beneficial lineage, with $s_d = 0.03$ and $s_b = 0.5$.

Extinction probability

Generally, if $(\mathbf{X}_t)_t$ is reducible with an infinite set of types,

$$p_{ext}^{glob} = \mathbb{P}\Big(\lim_{t \to \infty} |\mathbf{X}_t| = 0\Big) \leqslant \mathbb{P}\Big(\forall i \in \mathbb{N}, \lim_{t \to \infty} X_{t,i} = 0\Big) = p_{ext}^{part}.$$

Proposition

Partial vs. global extinction

$$p_{ext}^{part} = p_{ext}^{glob} = p_{ext}.$$

Proposition

Extinction threshold

$$p_{ext} = 1 \iff u \ge \ln(1+s_b).$$

Proof. For branching random walks¹

$$p_{ext}^{part} < 1 \iff \limsup_{t \in \mathbb{N}} \left(m_{0,0}^{(t)} \right)^{\frac{1}{t}} > 1 \iff e^{-\mu} \left(1 + s_b \right) > 1.$$

¹Zucca (2011)

Extinction probability

Obtained² as the limit of the extinction probability of a branching process $(\mathbf{X}_{t}^{(D)})_{t}$ with a **finite** number of types D

- $(\mathbf{X}_t)_t$ in which none of the individuals with more than D deleterious mutations are counted
- = branching process with set of types $\{0, \ldots, D\}$ and offspring generating functions $f_i(r_0, \ldots, r_D, 1, 1, \ldots)$

$$p_{ext} = \lim_{D \to \infty} \mathbb{P}\left(\lim_{t \to \infty} |\mathbf{X}_t^{(D)}| = 0\right)$$

Let
$$D_0 = \max\{i \in \mathbb{N} : e^{-u}w_i > 1\}.$$

Proposition

$$p_{ext} = \mathbb{P}\left(\lim_{t \to \infty} |\mathbf{X}_t^{(D_0)}| = 0\right),$$

and only $D_0 + 1$ equations are required to compute^a p_{ext} .

 $^{\rm a}{\rm First}$ coordinate of the smallest non-negative fixed point of the offspring generating function with D_0+1 types

²Hautphenne *et al* (2013)

Survival probability

Proposition

The survival probability $p_{svl} = 1 - p_{ext}$ is a monotonically decreasing function of s_d which reaches its minimum at $s_d = s_c = 1 - e^u / (1 + s_b)$.

Figure. Survival probability p_{svl} of a beneficial lineage, with $s_b = 0.1$.

Relative fitness

Absolute fitnesses

$$\mathcal{W}\left(\mathbf{X}_{t}^{b}\right) = \sum_{i \in \mathbb{N}} w_{i} \frac{X_{t,i}^{b}}{|\mathbf{X}_{t}^{b}|}, \quad t < T_{ext}^{b},$$

 $\frac{\mathcal{W}\left(\mathsf{X}_{t}^{b}\right)}{\mathcal{W}\left(\mathsf{X}_{t}^{b}+\mathsf{X}_{t}\right)}.$

Relative fitness

How do the fitnesses of the adaptive sub-population and of the large wild-type population compare?

Intuition

Since both populations are accumulating deleterious mutations at the same rate, the *relative* fitness should not depend on this deleterious mutation rate.

Relative Fitness

Large population approximation

Proposition

$$\lim_{N \to \infty} \frac{\mathcal{W}\left(\mathsf{X}_{t}^{b}\right)}{\mathcal{W}\left(\mathsf{X}_{t}^{b} + \mathsf{X}_{t}\right)} \stackrel{a.s.}{=} e^{u(1-s_{d})\left(1-(1-s_{d})^{t}\right)} \mathcal{W}\left(\mathsf{X}_{t}^{b}\right).$$

Proof. Branching property for $(X_t)_t$ (*N* independent copies of a process starting with one individual) and strong law of large numbers:

$$\lim_{N \to \infty} \frac{1}{\mathcal{W}\left(\mathbf{X}_{t}^{b} + \mathbf{X}_{t}\right)} = \lim_{N \to \infty} \frac{|\mathbf{X}_{t}^{b}| + |\mathbf{X}_{t}|}{\sum_{i \in \mathbb{N}} (1 - s_{d})^{i} \left((1 + s_{b}) X_{t,i}^{b} + X_{t,i}\right)}$$
$$\stackrel{\text{a.s.}}{=} \frac{\mathbb{E}\left(|\mathbf{X}_{t}|\right)}{\sum_{i \in \mathbb{N}} (1 - s_{d})^{i} \mathbb{E}\left(X_{t,i}\right)}.$$

Relative Fitness

Long-time limit of the mean relative fitness

Proposition

$$\lim_{t \to +\infty} \mathbb{E}\left(\frac{\mathcal{W}\left(\mathsf{X}_{t}^{b}\right)}{\mathcal{W}\left(\mathsf{X}_{t}^{b} + \mathsf{X}_{t}\right)} \mathbf{1}_{t < \mathcal{T}_{ext}^{b}}\right) = (1 + s_{b}) p_{svl}.$$

Proof. Property for (finite-type) reducible branching processes³ with largest eigenvalue >1:

$$\lim_{t\to\infty}e^{tu}\left(1+s_b\right)^{-t}\mathsf{X}_t^b\stackrel{a.s.}{=}W\mathsf{v},$$

where

•
$$\mathbf{v} = \left(1, \frac{u(1-s_d)}{s_d}, \frac{1}{2!} \left(\frac{u(1-s_d)}{s_d}\right)^2, \dots\right)$$
 is the left eigenvector of the mean matrix **M** for its maximal eigenvalue $e^{-u} (1 + s_b)$,

• *W* is a one-dimensional random variable with $\mathbb{P}(W > 0) = p_{svl}$.

³Kesten and Stigum, 1967

Relative Fitness

We obtain upper and lower bounds for the mean relative fitness which only involve computable quantities of the processes $(|\mathbf{X}_{t}^{b}|)_{t \in \mathbb{N}}$ and $(X_{t,i}^{b})_{t \in \mathbb{N}}$.

- $\mathbb{E}(r^{|\mathbf{X}_t^b|})$ obtained by t iterations of $f_0(r, r, ...)$
- $\mathbb{E}(r^{X_{t,i}^b})$ obtained by t iterations of $f_0(1, \ldots, 1, r, 1, \ldots)$

Figure. Time evolution of the mean relative fitness ($s_b = 0.1, s_d = 0.03$). $_{19/24}$

Mutational meltdown

Extinction time of the fittest class

 $T_i := \inf\{t \ge 0 : X_{t,i} = 0\}$ conditionally on $X_0 = n_i$ the (rounded) average composition of the population at T_{i-1} .

Timing of sequential extinction of fittest classes

 $\mathbb{E}_{\mathbf{n}_{0}}(T_{0}), \mathbb{E}_{\mathbf{n}_{1}}(T_{1}), \ldots$

Mutational meltdown

- $T_i \stackrel{\mathcal{L}}{\sim}$ extinction time of the monotype branching process $(Y_t)_{t \ge 0}$ with offspring generating function $g(r) = f_i(1, \ldots, 1, r, 1, \ldots)$ and $Y_0 = n_{i,i}$
- $\phi_{t}\left(r
 ight) = \mathbb{E}_{1}\left(r^{Y_{t}}
 ight)$ solution of the Ricatti equation

$$\frac{\partial}{\partial t}\phi_t(r) = g\left(\phi_t(r)\right) - \phi_t(r), \quad \phi_t(0) = r.$$

Proposition

For each $i \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{N}^{\mathbb{N}}$ with $x_j = 0$ for j > i,

- the extinction time cumulative distribution $\mathbb{P}_{\mathbf{x}}\left(\mathcal{T}_{i}\leqslant t
 ight)$,
- the mean extinction time $\mathbb{E}_{\mathbf{x}}(T_i)$,

• the mean population composition at the extinction time $\mathbb{E}_{\mathbf{x}}(X_{T_i,j})$, can be computed explicitly.

Mutational meltdown

Sequence of the mean extinction times of the fittest classes (u = 0.1, $s_d = 0.03$)

Effect on adaptive dynamics

Thank you for your attention!