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Why do we study nonlinear branching process?

“Population growth of harbor seals in Washington State”

Image credit: ”Environmental limits to population growth: Figure 2”

Obviously, interactions between different individuals exist in the nature.

The evolution is also influenced by some random factors.

Motivation: We want to model the interactions between individuals and stochastic

perturbations by environment.
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Controlled branching process

In order to describe competition and interaction between individuals, the controlled

Galton-Watson branching process is defined by

Xn =

r(Xn−1)∑
i=1

ξn,i, n ≥ 1, (1)

where the function r(x) ≥ 0 controls the reproduction and ξn,i are i.i.d. random

variable.

A slight generalization of the above model is defined by:

Xn =

r(Xn−1)∑
i=1

ξn,i + g(Xn−1), (2)

where the function g(x) ≥ −x represents the influence of competition, interac-

tion, immigration and so on.

Our goal is to construct and to study the continuous-state and continuous-time

version of (2) by using SDE with jumps.
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Continuous-state nonlinear branching process

Recall that a generalization of the controlled Galton-Watson process is defined by:

Xn = g(Xn−1) +

r(Xn−1)∑
i=1

ξn,i. (3)

Suppose that µ := E(ξ1,1) <∞. Then [f(x) := g(x) + µγ(x)− x]:

Xn −Xn−1 = g(Xn−1) + µr(Xn−1)−Xn−1 +

r(Xn−1)∑
i=1

(ξn,i − µ),

Xn = X0 +

n∑
k=1

f(Xk−1) +

n∑
k=1

r(Xk−1)∑
i=1

(ξk,i − µ).

A typical continuous-state nonlinear branching process is the solution of:

x(t) = x(0) +

∫ t

0

f(x(s−))ds+

∫ t

0

∫ r(x(s−))

0

∫ ∞
0

ξÑ(ds, du, dξ), (4)

where Ñ(ds, du, dξ) is a compensated Poisson random measure on (0,∞)3.
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Continuous-state nonlinear branching process

A general continuous-state nonlinear branching process is constructed by the SDE:

Xt = X0 +

∫ t

0

γ0(Xs)ds+

∫ t

0

∫ γ1(Xs)

0

W (ds, du)

+

∫ t

0

∫ γ2(Xs−)

0

∫ ∞
0

zÑ(ds, du, dz). (5)

whereW (ds, du) is a Gaussian white noise based on dsdu and Ñ(ds, du, dz) =

N(ds, du, dz)−dsduπ(dz) is a compensated Poisson random measure
(∫∞

0
z∧

z2π(dz) <∞
)
. The red term is a continuous parallel of the blue term.

Here γ0 describes the interaction and γ1 ≥ 0, γ2 ≥ 0 describe the perturbations.

By saying {Xt : t ≥ 0} is a solution to (5), we mean it satisfies (5) before hitting

0 or∞ and it is trapped by those states.

Proposition (L, Yang and Zhou 2018)

For locally Lipschitz functions γ1, γ2 ≥ 0 and γ0 on (0,∞) with γi(0) = 0

(i = 0, 1, 2), there exists a pathwise unique positive solution to (5).
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Example: continuous-state branching process

Let γi(x) = bix, b1 > 0, b2 = 1. Then the solution to

Xt = X0 + b0

∫ t

0

Xsds+ b1

∫ t

0

∫ Xs

0

W (ds, du)

+

∫ t

0

∫ Xs

0

∫ ∞
0

zÑ(ds, du, dz),

is a continuous-state branching process. This process was studied by Lamperti

(1967) and many others.

Stochastic equations of this type have been studied by Berton and Le Gall (2006)

and Dawson and Li (2006, 2012).

Only in this case, the solution to (5) satisfies branching property, which means

that different individual act independently with each other.
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Example: Feller branching diffusion with logistic growth

Lambert (2005) studied logistic branching process.

A special case of his model is the Feller branching diffusion with logistic growth

defined by:

Xt = X0 +

∫ t

0

(rXs − cX2
s )ds+ σ

∫ t

0

∫ Xs

0

W (ds, du)

or, equivalently,

Xt = X0 +

∫ t

0

(rXs − cX2
s )ds+ σ

∫ t

0

√
XsdBs.

where σ ≥ 0, c ≥ 0 and b are constants.

1 When c = 0, it reduces to a Feller branching diffusion; Feller (1951).

2 When σ = 0, it reduces to deterministic logistic growth model.
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Example: Feller branching diffusion with logistic growth

Five sample paths of the Feller branching diffusion with logistic growth (by Math-

ematica 11):

Xt = 0.1 +

∫ t

0

(Xs −X2
s )ds+ 0.05

∫ t

0

√
XsdBs.

The sample paths are very similar to the curve of the number of seals.
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Rich structures and problems to study

Continuous-state nonlinear branching processes involve rich mathematical struc-

tures and there are quite a number of problems to study.

For x ≥ 0 and y ≥ 0 let Px(·) = P(|X0 = x) and define the stopping times

τ−y = inf{t > 0 : Xt ≤ y}, τ+
y = inf{t > 0 : Xt ≥ y}

and τ+
∞ = limy→∞ τ

+
y .

1 Can the process hit 0 in finite time with a positive probability?

i.e. Px{τ−0 <∞} = 0 or > 0?

2 Can the process hit∞ in finite time with a positive probability?

i.e. Px{τ+
∞ <∞} = 0 or > 0?

3 Can the process come down from infinity?

i.e. limy→∞ limx→∞ Px{τ−y < t} = 1 for all t > 0?

(If it comes down from infinity, there exists (Xt)t>0 so that X0+ =∞.)
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Martingale approach

The study of the above 3 questions is based on the local martingale (a > 0):

X1−a
t exp

{ ∫ t

0

Ga(Xs)ds
}
, t ≥ 0,

where

Ga(u) =
(a− 1)

u
γ0(u)−

a(a− 1)

2u2
γ1(u)

− γ2(u)

∫ ∞
0

[(
1 +

z

u

)1−a
− 1−

(1− a)z

u

]
π(dz).
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Main results

Theorem 1 (L, Yang and Zhou 2018)

(i) If there exist a > 1 and r < 1 so that Ga(u) ≥ −(lnu−1)r for all small

enough u > 0, then Px{τ−0 <∞} = 0 for all small enough x > 0.

(ii) If there exist 0 < a < 1 and r > 1 so that Ga(u) ≥ (lnu−1)r for all

small enough u > 0, then Px{τ−0 <∞} > 0 for all small enough x > 0.

Theorem 2 (L, Yang and Zhou 2018)

(i) If there exist constants 0 < a < 1 and r < 1 so that Ga(u) ≥ −(lnu)r

for all u large enough, then Px{τ+
∞ <∞} = 0 for all x > 0.

(ii) If there exist a > 1 and r > 1 so that Ga(u) ≥ (lnu)r for all u large

enough, then Px{τ+
∞ <∞} > 0 for all large x.

Pei-Sen Li (Concordia University) Continuous-state nonlinear branching (2018/4/12) 11 / 22



Main results

Theorem 3 (L, Yang and Zhou 2018)

(i) If there exit constants a > 1 and r < 1 such that

Ga(u) ≥ −(lnu)r

for all u large, then process X doesn’t come down from infinity.

(ii) If there exit constants 0 < a < 1, r > 1 such that

Ga(u) ≥ (lnu)r

for all u large enough, then process X comes down from infinity.
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Discussions

Applying above theorems in the special case γi(x) = bix
ri , ri > 0 (i = 0, 1, 2),

b1, b2 ≥ 0 and π(dz) = z−1−αdz (1 < α < 2), we can make the conclusions:

Both large negative drift γ0 and large perturbations γ1, γ2 near 0 can cause

extinction.

Explosion is only caused by large positive drift γ0 near∞. Large perturba-

tions can prevent explosion.

Both large negative drift γ0 and large perturbations γ1, γ2 near ∞ can

cause coming down from infinity.
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Special case: necessary and sufficient conditions

Consider the special case with r > 0 and γi(x) = bix
r (i = 0, 1, 2). Let

ψ(λ) = −b0λ+
b21
2
λ2 + b2 + b2

∫
(0,∞)

(e−λz − 1 + λz)π(dz).

Theorem 4 (L and Zhou 2018)

(Extinction property) for all x > 0, we have Px{τ−0 < ∞} > 0 if and

only if ∫ ∞− λr−1

ψ(λ)
dλ <∞.

(Non-Explosion) for all x > 0, we have Px{τ+
∞ <∞} = 0 if and only if

one of the following two conditions is satisfied: (i) b0 ≤ 0; (ii) b0 > 0 and∫
0+

λr−1

−ψ(λ)
dλ =∞.
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Special case: necessary and sufficient conditions

Theorem 5 (L 2016)

The process comes down from infinity if and only if b0 ≤ 0 and∫
0+

λr−1

ψ(λ)
dλ <∞.

Remark:

For classical continuous-state branching process (r = 1), the extinction

condition was obtained by Grey (1974).

For classical continuous-state branching process (r = 1), the non-explosion

condition was given by Kawazu and Watanabe (1971).

The classical continuous-state branching process (r = 1) does not come

down from infinity.
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Special case: a Lamperti transformation

Let (Zt)t≥0 be a spectrally positive Lévy process with Laplace exponent ψ.

Let T−x := inf{t ≥ 0 : Zt ≤ x}. Define

η(t) := inf
{
s ≥ 0 :

∫ s∧T0

0

Z−ru du > t
}
, t ≥ 0.

Then by Lamperti’s transformation

(Xt)t≥0 := (Zη(t))t≥0

is a continuous-state nonlinear branching process with γi(x) = bix
r (i = 0, 1, 2).

If T−0 <∞, then τ−0 =
∫ T−

0

0
Z−rs ds.

If T−0 =∞, then τ+
∞ =

∫ T−
0

0
Z−rs ds.

We can convert the study of τ−0 and τ+
∞ to that of the integral

∫ T−
0

0
Z−rs ds.
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The Lévy process: finiteness of integral functional

Proposition (L and Zhou 2018)

Let f be a strictly positive function on (0,∞) satisfying supx≥ε f(x) < ∞
for any ε > 0. Then for any x > 0, the following statements are equivalent:

(i)

Px
( ∫ T

−
0

0

f(Zs)ds <∞|T−0 <∞
)
> 0;

(ii)

Ex
[ ∫ T

−
0

0

f(Zt)e
−λZtdt|T−0 <∞

]
<∞ for some/each λ > 0.
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The Lévy process: finiteness of integral functional

Proposition (L and Zhou 2018)

Suppose that ψ′(0) < 0 and f is a non-increasing positive function on (0,∞).

Then the following statements are equivalent:

(i)

Px
( ∫ T

−
0

0

f(Zs)ds <∞|T−0 =∞
)
> 0 for each x > 0;

(ii)

Ex
[ ∫ T−

y

0

f(Zs)ds
]
<∞ for each y ∈ (0, x) and x > 0.
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The Lévy process: finiteness of integral functional

From Theorem 2.7 (ii) in Kuznetsov et al. (2011) we obtain

Proposition (L and Zhou 2018)

Let q = sup{λ > 0 : ψ(λ) = 0}. For any x > y > 0 and r > 0 we have:

(i)

Ex
[ ∫ T−

y

0

Z−rt dt
]

=
1

Γ(r)

∫ ∞
0

e−(λy+qx−qy) − e−λx

ψ(λ)
λr−1dλ.

(ii)

Ex
[ ∫ T

−
0

0

Z−rt e−λZtdt|T−0 <∞
]

=
1

Γ(r)

∫ ∞
0

1− e−(λ+s)x

ψ(s+ λ+ q)
sr−1ds.

Finally, by giving the condition of the finiteness of the above

integrations we can prove Theorem 4.
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Ongoing work: Speed of coming down from infinity

For a continuous-state nonlinear branching process (Xt)t>0 coming down from

infinity (X0+ =∞), we want to find a function v such that

lim
t→0

Xt

v(t)
= 1.

The same question for some other processes has been studied for similar models by

Berestycki et al. (2010) and Bansaye et al. (2015).
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Thank you!
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