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Let us recall some facts from Vincent’s talk.

Consider a sequence of random environments (ENn , n ≥ 1) which
are i.i.d. and define

ZNn+1 =

FN (ZNn )∑
i=1

LNi,n(ZNn , E
N
n ) and SNn+1 = SNn + ENn ,

where for each (z, e), (LNi,n(z, e), i ≥ 1, n ≥ 0) are i.i.d. with
common distribution L(z, e) ∈ N a.s.

What about the scaling limits of(
ZN[vN ·]

N
,SN[vN ·]

)
??
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CSBP with competition in a Lévy environment

The limiting objects are continuous state branching processes
(CB-processes) with competition in a Lévy environment.

More precisely we can introduce such family of processes as the
unique strong solution of the following SDE (He, Li and Xu and
Palau and P. (2018))

Zt = Z0 + b

∫ t

0

Zsds−
∫ t

0

g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0

Zs−dSs

+

∫ t

0

∫
[1,∞)

∫ Zs−

0

zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Zs−

0

zÑ (b)(ds, dz,du),

where g is a continuous function on [0,∞) with g(0) = 0, B(b) is a
standard Brownian motion N (b) is a Poisson random measure
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defined on R3
+ with intensity measure dsµ(dz)du such that∫

(0,∞)
(1 ∧ z2)µ(dz) <∞,

and Ñ (b) denotes its compensated version.

Moreover S is an
independent Lévy process which can be written as follows

S
(e)
t = γt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds, dz)

+

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz),

with γ ∈ R, σ ≥ 0, B(e) is a standard Brownian motion and N (e)

is a Poisson random measure taking values on R+ × R and with
intensity dsπ(dz) satisfying∫

R
(1 ∧ z2)π(dz) <∞.
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Aim : We are interested in qualitative aspects of these processes.
For instance extinction, explosion, equilibrium, etc ...

When the environment is fixed ...
• Logistic case g(x) = cx2, for c ≥ 0. Lambert (2005) studied
the extinction event as well as the property of coming down
from infinity, via a Lamperti type transform.

• Non-decreasing g Pardoux and co-authors (genealogies,
scaling limits, etc), Ma (2015) (Lamperti type transform),
Berestycki et al. (2018) (Lamperti type transform and
genealogies for general branching mechanisms).

• Again the logistic case Clement Foucart will provide a
complete understanding of the process, (2018).
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Some motivation

We consider that the branching and competition mechanisms are as
follows

g(x) = kx2 and ψ(λ) = bλ for x, λ ≥ 0,

where k is a positive constant.

In other words,

Zt = Z0 +

∫ t

0
Zs(b− kZs)ds+

∫ t

0
Zs−dSs.

In particular, it can be rewritten as follows

Zt =
Z0e

Kt

1 + kZ0

∫ t

0
eKsds

, t ≥ 0,
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where K is a Lévy process which is a modification of the Lévy
processes S.

Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :

i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

where K is a Lévy process which is a modification of the Lévy
processes S. Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :

i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

where K is a Lévy process which is a modification of the Lévy
processes S. Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :

i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

where K is a Lévy process which is a modification of the Lévy
processes S. Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :
i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.

ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

where K is a Lévy process which is a modification of the Lévy
processes S. Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :
i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.

iii) If the process K drifts to ∞, then Z has a stationary
distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

where K is a Lévy process which is a modification of the Lévy
processes S. Charline Smadi will speak more about K.

Proposition (Palau & P., 2018)

The process Z has the following asymptotic behaviour :
i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

Time to extinction

We define the first hitting time to 0 of Z as follows

TZ0 = inf{t ≥ 0, Zt = 0},

with the convention that inf{∅} =∞. We denote by Px for the law
of Z starting from x > 0.

In the sequel, we assume (finite mean)∫
(0,∞)

(z ∧ z2)µ(dz) <∞.

We also assume tha that the branching mechanism ψ satisfies the
so-called Grey’s condition, i.e.∫ ∞ dλ

ψ(λ)
<∞.
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Important : Grey’s condition is a necessary and sufficient condition
for CB processes in random environment to be extinct with positive
probability (see He et al. (2018)).

We also introduce the CB-process in a Lévy random environment
Z] = (Z]t , t ≥ 0) as the unique strong solution of the following SDE

Z]
t =Z]

0 − ψ′(0+)

∫ t

0

Z]
sds+

∫ t

0

√
2γ2Z]

sdBs +

∫ t

0

Z]
s−dSs

+

∫ t

0

∫
(0,1)

∫ Z]
s−

0

zÑ (b)(ds, dz,du) +

∫ t

0

∫
[1,∞)

∫ Z]
s−

0

zN (b)(ds,dz,du).
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zÑ (b)(ds, dz,du) +

∫ t

0

∫
[1,∞)

∫ Z]
s−

0

zN (b)(ds,dz,du).



CSBP with competition in a Lévy random environment. Brownian case Logistic competition. Feller diffusion case.

For simplicity, we denote its law starting from x ≥ 0 by P]x.

Theorem
Assume that the Lévy measure associated to the branching
mechanism ψ has finite first moment and g is non-decreasing. For
y ≥ x ≥ 0, we have that (Z,Px) is stochastically dominated by
(Z,Py). Moreover, the process (Z,Px) is stochastically dominated
by (Z],P]y).

In particular if Grey’s condition is fulfilled, then (Z,Px) becomes
extinct with positive probability. Furthermore if

lim inf
t→∞

Kt = −∞,

then (Z,Px) becomes extinct at finite time a.s.
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For our next result, we assume that following property on the
competition mechanism g holds : There exists z0 > 0 such that∫ ∞

z0

dy

g(y)
<∞.

Theorem
Assume that the Lévy measure associated to the branching
mechanism ψ has finite first moment and Grey’s condition also
holds together with the above assumption on g, then

sup
x≥0

Ex
[
TZ0

]
<∞.

If in addition
∫
(−1,0) π(dz) <∞, the process comes down from

infinity.
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We say that the process comes down from infinity if there exist a
law P∞ such that the laws (Px, x ≥ 0) converges weakly towards
P∞ as x goes to ∞ and the limiting object is strong Feller.

Observe that under the integral condition on the competition
mechanism g, the environment plays no role. In other words, it
seems that the competition mechanism is too strong for the
environment.
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Brownian case.
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Brownian case.

Here, we assume that St = σB
(e)
t , t ≥ 0 and we will observe that

we can obtain further results.

Let X = (Xt, t ≥ 0) be a spectrally positive Lévy process with
characteristics (−b, γ, µ). (Not necesarilly finite mean)

Proposition
Let W = (Wt, t ≥ 0) be a standard Brownian motion independent
of X and assume that g is a continuous function and
non-decreasing on [0,∞) with g(0) = 0. For each x > 0, there is a
unique strong solution to

dRt = 1{Rr−>0:r≤t}dXt−1{Rr−>0:r≤t}
g(Rt)

Rt
dt+1{Rr−>0:r≤t}σ

√
RtdWt.
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Theorem
Let R = (Rt, t ≥ 0) be as before and TR0 = sup{s : Rs > 0}. We
also let C be the right-continuous inverse of η, where

ηt =

∫ t∧TR0

0

ds

Rs
, t > 0.

Hence the process defined by

Zt =


RCt , if 0 ≤ t < η∞
0, if η∞ <∞, TR0 <∞ and t ≥ η∞,
∞, if η∞ <∞, TR0 =∞ and t ≥ η∞

is a CSBP with competition in a Brownian random environment.
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Theorem
Reciprocally, let Z CSBP with competition in a Brownian random
environment with Z0 = x and let

Ct =

∫ t∧TZ0

0
Zsds, t > 0.

If η denotes the right-continuous inverse of C, then the process
defined by

Rt =

{
Zηt , if 0 ≤ t < C∞
0, if C∞ <∞ and t ≥ C∞,

satisfies the SDE from the previous definition.
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Logistic case.
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Bounded variation case

If X is a subordinator, then the process R satisfies

dRt = dXt − cRtdt+ σ
√
RtdWt.

In other words, R is a CBI process with branching mechanism

ω(θ) = θ

(
c+

σ2θ

2

)
and φ(θ) = δθ +

∫
(0,∞)

(1− eθx)µ(dx),

Assume that X satisfies∫ ∞
1

ln(u)µ(du) <∞. (3.1)
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Lemma
Let

m(λ) = −
∫ λ

0

φ(u)

ω(u)
du, for λ ≥ 0,

then the following identity holds

−m(λ) =

∫ ∞
0

(
1− e−λz

)e− 2c
σ2
z

z

(
b+

∫ z

0
e

2c
σ2
uµ(u)du

)
dz,

where µ(x) = µ(x,∞),
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Lemma

δ = b−
∫
(0,1)

uµ(du) ≥ 0,

and the following identity∫
(0,∞)

e−λzν(dz) = em(λ), λ ≥ 0,

defines a unique probability measure ν on (0,∞) which is infinitely
divisible. In addition, it is self-decomposable if µ(0) ≤ δ.
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Proposition

Assume that 2δ ≥ σ2 > 0, c > 0 and that X is a subordinator.
Then the point 0 is polar, that is to say Px(T0 <∞) = 0 for all
x > 0. Moreover if∫ 1

0

dz

z
exp

{
−
∫ 1

z

∫ ∞
0

(1− e−us)
ω(u)

µ(ds)du

}
=∞ (3.2)

Z is recurrent. Additionally,
a) If 2δ > σ2 then the process Z is positive recurrent in (0,∞).

Its invariant distribution ρ has a finite expected value if and
only if the log-moment condition (3.1) holds. If the latter
holds, then ρ is the size-biased distribution of ν, in other words

ρ(dz) =

(∫
(0,∞)

s−1ν(ds)

)−1
z−1ν(dz), z > 0. (3.3)
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Proposition

b) Assume that 2δ = σ2 and the log-moment condition (3.1)
holds,
b.1) if complicated integral condition is also satisfied, then Z is

positive recurrent in (0,∞) and its invariant probability is
defined by (3.3),

b.2) or if the complicated integral condition is not satisfied, then the
process Z is null recurrent and converges to 0 in probability.

Finally, if (3.2) is not satisfied, then Z is transient and for any
x ≥ a > 0,

Px
(

lim
t≥0

Zt =∞
)

= 1 and Px
(

inf
t≥0

Zt < a

)
=
f0(x)

f0(a)
.
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Proposition

Assume that σ2 > 2δ but σ2 > 0, c > 0 and X is a subordinator,
then the process converges to 0 with positive probability, in other
words

Px(lim
t→0

Zt = 0) > 0,

for all x > 0.
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Unbounded variation case.

In this case the process X is not longer a subordinator

In what follows, we assume that∫ ∞
1

uµ(du) <∞ holds.

Here we want to deduce an “explicit" expression for the law of TZ0 ,
the first step to reach this result is to find an explicit formulation of
the function

Gq,x(λ) =

∫ ∞
0

e−qtEx[e−λZt ]dt.

Indeed, we have that limλ→+∞ qGq,x(λ) = Ex[e−qT0 ].
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This can be done by using the infinitesimal generator of the process
Z with the function e−λz, from which we derive a ordinary
differential equation of second order.

Such ODE can be reduce to a Ricatti equation whose solution is
very nice

Finally, such unique solution allow us to deduce our goal.

Actually, we can do better and deduce the law of

Ta = inf{s : Zs ≤ a},

for x ≥ a.
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Feller diffusion case.
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In this particular case, the process satisfies

Zt = Z0+b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0
σZsdB

(e)
s .

In this case, we can even take g to be just continuous and such
that g(0) = 0.

Proposition

Assume that Z is the unique strong solution of the above equation,
then Px

(
TZ0 <∞

)
= 1 accordingly as

∫ ∞
exp

{∫ ξ

1

2(g(z)− bz)
2γ2z + σ2z2

dz

}
dξ =∞.

Moreover

Px
(

lim
t→∞

Zt =∞
)

= 1− Px
(
TZ0 <∞

)
.
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For instance, we deduce that

a) if there exist z0 > 0 and w < b− σ2

2 such that for any z ≥ z0,
g(z) ≤ wz, then Px(TZ0 <∞) < 1.

Example : cooperation case g(z) ≤ 0 and b > σ2

2 .

b) if there exist z0 > 0 and w > b− σ2

2 such that for any z ≥ z0,
g(z) ≥ wz, then Px(TZ0 <∞) = 1.

Example : large competition g(z) ≥ bz for any z large enough,
which is true for the logistic case g(z) = cz2.
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Let us define
TZa = inf{t ≥ 0 : Zt ≤ a},

for a ≥ 0.

We also introduce

S(x) :=

∫ x

0
exp

{∫ ξ

1

2(g(z)− bz)
2γ2z + σ2z2

dz

}
dξ.

The function S : IR+ → (0, S(+∞)) is continuous and bijective. In
any case, we denote by ϕ̄(x) its inverse.
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Proposition

Assume that γ > 0. Then, for any x ≥ a ≥ 0, and for any λ > 0,

Ex
[
e−λT

Z
a

]
= exp

{
−
∫ S(x)

S(a)
ȳλ(u)du

}
, (4.4)

where ȳλ is solution of a Ricatti equation that involves ϕ̄.
Note that if the integral condition of the previous proposition is
satisfied, then TZa < +∞ a.s.
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