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Galton–Watson branching process with immigration

GWI process

Xn =

Xn−1∑
i=1

ξn,i + εn, n ∈ N := {1,2, . . .},

where
0∑

i=1
ξn,i := 0,

{ξn,i , εn : n, i ∈ N} independent rv’s with values in Z+ := {0,1,2, . . .},

{ξn,i : n, i ∈ N} identically distributed,

{εn : k ∈ N} identically distributed.

If εn = 0, n ∈ N, then it is a GW process.

For notational convenience, let ξ and ε be random variables such
that ξ D= ξ1,1 and ε

D
= ε1, and put

mξ := E(ξ) ∈ [0,∞], mε := E(ε) ∈ [0,∞].
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Question

Under which conditions is the distribution of a not necessarily
stationary GWI process is regularly varying at any fixed time, i.e.,

lim
x→∞

P(Xn > qx)
P(Xn > x)

= q−α for all q ∈ R++ := (0,∞)

for each n ∈ N with some α ∈ R+ := [0,∞) ?
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Regularly varying offspring distribution (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 ξ is regularly varying with index α ∈ [1,∞),
2 mξ ∈ R++ in case of α = 1,
3 there exists r ∈ (α,∞) with E(X r

0) <∞ and E(εr ) <∞,
4 P(X0 = 0) < 1 or P(ε = 0) < 1.

Then for each n ∈ N, we have

P(Xn > x) ∼ E(X0)mn−1
ξ

n−1∑
i=0

m(α−1)i
ξ P(ξ > x)

+ mε

n−1∑
i=1

mn−i−1
ξ

n−i−1∑
j=0

m(α−1)j
ξ P(ξ > x)

as x →∞, and hence Xn is also regularly varying with index α.
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Additivity of GWI processes

If (Xn)n∈Z+ is a GWI process, then for each n ∈ N, we have

Xn = V (n)(X0) +
n∑

i=1

V (n−i)
i (εi),

where
{

V (n)(X0),V
(n−i)
i (εi) : i ∈ {1, . . . ,n}

}
are independent and

V (n)(X0) represents the number of individuals alive at time n,
resulting from the initial individuals X0 at time 0,

V (n−i)
i (εi) represents the number of individuals alive at time n,

resulting from the immigration εi at time i .
Moreover,

V (n)(X0)
D
=

X0∑
`=1

ζ
(n)
` , V (n−i)

i (εi)
D
=

εi∑
`=1

ζ
(n−i)
` ,

where {ζ(n−i)
` : i ∈ {0,1, . . . ,n}, ` ∈ N} are independent copies of

Yn−i such that (Yj)j∈Z+ is a GW process with initial value Y0 = 1
and with the same offspring distribution as (Xk )k∈Z+ .

Barczy, Bősze, Pap (Szeged) Badajoz 2018 6 / 28



Moments and regular variation

1 If X is a non-negative regularly varying random variable with
index α ∈ R++, then

E(Xβ)

{
<∞ for all β ∈ (−∞, α),

=∞ for all β ∈ (α,∞).

2 If X and Y are non-negative random variables such that X is
regularly varying with index α ∈ R+ and there exists r ∈ (α,∞)
with E(Y r ) <∞, then

P(Y > x) = o(P(X > x)) as x →∞.
3 If X1 and X2 are non-negative regularly varying random

variables with index α1 ∈ R+ and α2 ∈ R+, respectively, such
that α1 < α2, then

P(X2 > x) = o(P(X1 > x)) as x →∞.
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Convolution property

1 If X1 and X2 are non-negative random variables such that X1 is
regularly varying with index α ∈ R+ and there exists r ∈ (α,∞)
with E(X r

2) <∞, then

P(X1 + X2 > x) ∼ P(X1 > x) as x →∞,

and hence X1 + X2 is regularly varying with index α.
2 If X1 and X2 are independent non-negative regularly varying

random variables with index α ∈ R+, then

P(X1 + X2 > x) ∼ P(X1 > x) + P(X2 > x) as x →∞,

hence X1 + X2 is regularly varying with index α.
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Regularly varying random sums (Faÿ et al. 2006, Robert and
Segers 2008, Denisov, Foss and Korshunov 2010)
Let τ be a non-negative integer-valued r.v. and let {ζ, ζi : i ∈ N} be
i.i.d. non-negative r.v., independent of τ .

1 If τ is regularly varying with index β ∈ R+, E(ζ) ∈ R++ and
there exists r ∈ (β,∞) with E(ζ r ) <∞, then

P
( τ∑

i=1

ζi > x
)
∼ P

(
τ >

x
E(ζ)

)
∼ (E(ζ))β P(τ > x) as x →∞.

2 If ζ is regularly varying with index α ∈ [1,∞), E(ζ) ∈ R++,
P(τ = 0) < 1 and there exists r ∈ (α,∞) with E(τ r ) <∞, then

P
( τ∑

i=1

ζi > x
)
∼ E(τ)P(ζ > x) as x →∞.

3 If τ and ζ are regularly varying with index β ∈ [1,∞),
P(ζ > x) = O(P(τ > x)) as x →∞ and E(τ),E(ζ) ∈ R++, then

P
( τ∑

i=1

ζi > x
)
∼ E(τ)P(ζ > x) + (E(ζ))β P(τ > x) as x →∞.
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Sketch of proof

By the additivity:

Xn
D
= V (n)(X0) +

n∑
i=1

V (n−i)
i (εi)

with

V (n)(X0)
D
=

X0∑
`=1

ζ
(n)
` , V (n−i)

i (εi)
D
=

εi∑
`=1

ζ
(n−i)
` ,

where {ζ(n−i)
` : i ∈ {0,1, . . . ,n}, ` ∈ N} are independent copies of

Yn−i such that (Yj)j∈Z+ is a GW process with initial value Y0 = 1
and with the same offspring distribution as (Xk )k∈Z+ .
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We prove P(Yj > x) ∼ mj−1
ξ

∑j−1
i=0 m(α−1)i

ξ P(ξ > x) by induction:
For j = 1 obvious, since Y1 = ξ1,1.
Induction hypothesis: the statement holds for {1, . . . , j − 1}.
By the Markov property, we have Yj

D
= V (j−1)(ξ1,1), where

(V (k)(ξ1,1))k∈Z+
is GW process with initial value V (0)(ξ1,1) = ξ1,1.

By the additivity: V (j−1)(ξ1,1)
D
=
∑ξ1,1

i=1 ζ
(j−1)
i , where {ζ(j−1)

i : i ∈ N}
are independent copies of Yj−1 such that {ξ1,1, ζ

(j−1)
i : i ∈ N} are

independent.
By the induction hypothesis:
P(ζ(j−1)

i > x) = P(Yj−1 > x) = O(P(ξ > x)) as x →∞, thus by
the regularly varying random sums and the induction hypothesis,

P(Yj > x) = P
( ξ1,1∑

i=1

ζ
(j−1)
i > x

)
∼ E(ξ1,1)P(ζ

(j−1)
1 > x) + (E(ζ(j−1)

1 ))α P(ξ1,1 > x)

∼ mξ P(Yj−1 > x) + m(j−1)α
ξ P(ξ > x) ∼ mj−1

ξ

j−1∑
i=0

m(α−1)i
ξ P(ξ > x).

By the regularly varying random sums,

P(V (n−i)
i (εi) > x) ∼ E(ξ1,1)P(ζ

(n−i)
1 > x) ∼ mε P(Yn−i > x).
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Regularly varying initial distribution (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 X0 is regularly varying with index β ∈ R+,
2 P(ξ = 0) < 1,
3 there exists r ∈ (1 ∨ β,∞) with E(ξr ) <∞ and E(εr ) <∞.

Then for each n ∈ N, we have

P(Xn > x) ∼ mnβ
ξ P(X0 > x) as x →∞,

and hence Xn is also regularly varying with index β.
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Regularly varying immigration distribution (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 ε is regularly varying with index γ ∈ R+,
2 P(ξ = 0) < 1,
3 there exists r ∈ (1 ∨ γ,∞) with E(ξr ) <∞ and E(X r

0) <∞.
Then for each n ∈ N, we have

P(Xn > x) ∼
n∑

i=1

m(n−i)γ
ξ P(ε > x) as x →∞,

and hence Xn is also regularly varying with index γ.
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Regularly varying offspring and initial distributions (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 X0 and ξ are regularly varying with index α ∈ [1,∞),
2 E(X0) ∈ R++ and mξ ∈ R++ in case of α = 1,
3 P(ξ > x) = O(P(X0 > x)) as x →∞,
4 there exists r ∈ (α,∞) such that E(εr ) <∞.

Then for each n ∈ N, we have

P(Xn > x) ∼ E(X0)mn−1
ξ

n−1∑
i=0

m(α−1)i
ξ P(ξ > x) + mnα

ξ P(X0 > x)

+ mε

n−1∑
i=1

mn−i−1
ξ

n−i−1∑
j=0

m(α−1)j
ξ P(ξ > x)

as x →∞, and hence Xn is also regularly varying with index α.
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Regularly varying offspring and immigration (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 ξ and ε are regularly varying with index α ∈ [1,∞),
2 mξ ∈ R++ and mε ∈ R++ in case of α = 1,
3 P(ξ > x) = O(P(ε > x)) as x →∞,
4 there exists r ∈ (γ,∞) with E(X r

0) <∞.
Then for each n ∈ N, we have

P(Xn > x) ∼ E(X0)mn−1
ξ

n−1∑
i=0

m(α−1)i
ξ P(ξ > x)

+ mε

n−1∑
j=1

mn−j−1
ξ

n−j−1∑
i=0

m(α−1)i
ξ P(ξ > x) +

n∑
j=1

m(n−j)α
ξ P(ε > x)

as x →∞, and hence Xn is also regularly varying with index α.
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Regularly varying initial value and immigration (BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 X0 and ε are regularly varying with index β ∈ R+,
2 P(ξ = 0) < 1,
3 there exists r ∈ (1 ∨ β,∞) with E(ξr ) <∞.

Then for each n ∈ N, we have

P(Xn > x) ∼ mnβ
ξ P(X0 > x) +

n∑
i=1

m(n−i)β
ξ P(ε > x) as x →∞,

and hence Xn is also regularly varying with index β.

Barczy, Bősze, Pap (Szeged) Badajoz 2018 16 / 28



Regularly varying initial, offspring and immigration distributions
(BBP 2018+)
Let (Xn)n∈Z+ be a GWI process such that

1 X0, ξ and ε are regularly varying with index α ∈ [1,∞),
2 E(X0) ∈ R++, mξ ∈ R++ and mε ∈ R+ in case of α = 1,
3 P(ξ > x) = O(P(X0 > x)) as x →∞ and

P(ξ > x) = O(P(ε > x)) as x →∞.
Then for each n ∈ N, we have

P(Xn > x) ∼ E(X0)mn−1
ξ

n−1∑
i=0

m(α−1)i
ξ P(ξ > x) + mnα

ξ P(X0 > x)

+ mε

n−1∑
j=1

mn−j−1
ξ

n−j−1∑
i=0

m(α−1)i
ξ P(ξ > x) +

n∑
j=1

m(n−j)α
ξ P(ε > x)

as x →∞, and hence Xn is also regularly varying with index α.
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Second order GWI process

Xn =

Xn−1∑
i=1

ξn,i +

Xn−2∑
i=1

ηn,i + εn, n ∈ N,

where {ξn,i , ηn,i , εn : n, i ∈ N} independent rv’s with values in Z+,

{ξn,i : n, i ∈ N} identically distributed,

{ηn,i : n, i ∈ N} identically distributed,

{εn : k ∈ N} identically distributed.

(Xn)n>−1 is a second order Markov chain
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2-type representation

Put
Z n :=

[
Zn,1
Zn,2

]
:=

[
Xn

Xn−1

]
, n ∈ Z+.

This yields

Z n =

Zn−1,1∑
i=1

[
ξn,i
1

]
+

Zn−1,2∑
i=1

[
ηn,i
0

]
+

[
εn
0

]
, n ∈ N,

hence (Z n)n∈Z+ is a 2-type GWI process with initial vector Z 0=

[
X0

X−1

]
,

which is a Markov chain.

Offspring mean matrix:

Mξ,η :=

[
mξ mη

1 0

]
with mξ := E(ξ1,1) ∈ [0,∞] and mη := E(η1,1) ∈ [0,∞].
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Expectation of a second order GW process

If (Yn)n>−1 is a second-order GW process with mξ,mη ∈ R+

satisfying mξ + mη > 0 and with initial values Y0 = 1, Y−1 = 0, then

mn := E(Yn) =
λn+1
+ − λn+1

−
λ+ − λ−

, n ∈ N,

where

λ+ :=
mξ +

√
m2
ξ + 4mη

2
∈ R++, λ− :=

mξ −
√

m2
ξ + 4mη

2
∈ (−λ+,0]

are the eigenvalues of Mξ,η.

Indeed, E(Yn) = mξ E(Yn−1) + mη E(Yn−2), which can be written in
the matrix form[

E(Yn)
E(Yn−1)

]
= Mξ,η

[
E(Yn−1)
E(Yn−2)

]
implying

[
E(Yn)

E(Yn−1)

]
= Mn

ξ,η

[
E(Y0)
E(Y−1)

]
.
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Regularly varying initial, offspring and immigration distributions
(Bősze and P 2018+)
Let (Xn)n>−1 be a second order GWI process such that

1 X0, X−1, ξ, η and ε are regularly varying with index α ∈ [1,∞),
2 E(X0),E(X−1),mξ,mε ∈ R++ and mη ∈ R+,
3 P(ξ > x) = O(P(X0 > x)), P(ξ > x) = O(P(X−1 > x)),

P(η > x) = O(P(X0 > x)), P(η > x) = O(P(X−1 > x)),
P(ξ > x) = O(P(ε > x)) and P(η > x) = O(P(ε > x)) as x →∞.

Then for each n ∈ N, we have

P(Xn > x) ∼
[
E(X0)
E(X−1)

]> n−1∑
k=0

mα
k
(
Mn−k−1
ξ,η

)> [P(ξ > x)
P(η > x)

]

+

[
mε

0

]> n−1∑
i=1

n−i−1∑
j=0

mα
j
(
Mn−j−1
ξ,η

)> [P(ξ > x)
P(η > x)

]
+ mβ

n P(X0 > x) + mα
n−1mα

η P(X−1 > x) +
n∑

i=1

mα
n−i P(ε > x).
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Tail behavior of the stationary distribution of a GWI
(Basrak, Kulik and Palmowski 2013)
Let (Xn)n∈Z+ be a GWI process such that

1 mξ ∈ (0,1),
2 ε is regularly varying with index α ∈ (0,2),
3 E(ξ2) <∞ in case of α ∈ [1,2).

Then the tail of the unique stationary distribution µ of (Xn)n∈Z+

satisfies

µ((x ,∞)) ∼
∞∑

i=0

miα
ξ P(ε > x) =

P(ε > x)
1−mα

ξ

as x →∞,

and hence µ is also regularly varying with index α.

The above result is valid also for α ∈ [2,3) under the additional
assumption E(ξ3) <∞.
The same seems to apply also for α ∈ [3,∞) possibly under the
additional assumption E(ξbαc+1) <∞.

Barczy, Bősze, Pap (Szeged) Badajoz 2018 22 / 28



Stationary distribution of the 2-type representation of a
second order GWI process

Let (Xn)n>−1 be a second order GWI process such that
1 mξ ∈ R++, mη ∈ R++, mξ + mη < 1,
2 P(ε = 0) < 1 and E(1{ε 6=0} log(ε)) <∞.

Then there exists a unique stationary distribution π for the Markov
chain ([

Xn
Xn−1

])
n∈Z+

.

Moreover, the marginals of π are the same distributions µ, admitting
the representation

µ
D
=
∞∑

i=0

V (i)
i (εi),

where (V (i)
k (εi))k>−1, i ∈ Z+, are independent copies of (Yk (ε))k>−1,

which is a second-order GW process with initial values Y0(ε) = ε and
Y−1(ε) = 0, and with the same offspring distributions as (Xk )k>−1.
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Tail behavior of the stationary distribution of the 2-type
representations of second order GWI processes (BBP 2018+)
Let (Xn)n∈Z+ be a second order GWI process such that

1 mξ ∈ R++, mη ∈ R++, mξ + mη < 1,
2 ε is regularly varying with index α ∈ (0,2),
3 E(ξ2) <∞ and E(η2) <∞ in case of α ∈ [1,2).

Then the tail of the marginals µ of the unique stationary distribution π
of the Markov chain ([

Xn
Xn−1

])
n∈Z+

satisfies

µ((x ,∞)) ∼
∞∑

i=0

mα
i P(ε > x) as x →∞,

and hence µ is also regularly varying with index α.
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Further remarks and open questions

The tail behavior of the stationary distribution of the 2-type
representation of a second order GWI process is the limit as
n→∞ of the corresponding tail behavior of non-stationary
processes.
In all results for second order processes, if we assume that η ≡ 0,
we get back formally the results for first order processes.
The same techniques can be used for higher order GWI
processes.
Joint regular variation for (general) 2-type GWI processes?
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Thank you for your attention!
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