Regularly varying Galton–Watson processes with immigration

Mátyás Barczy, Zsuzsanna Bősze, Gyula Pap

University of Szeged

IV Workshop on Branching Processes and their Applications

Badajoz, Spain, April 10-13, 2018

Barczy, Bősze, Pap (Szeged)

Tail behaviour of

- GWI processes admitting regularly varying
 - offspring distribution
 - initial distribution
 - immigration distribution
- second order GWI processes
- stationary distribution of second order GWI processes

Galton–Watson branching process with immigration

GWI process

where

$$X_n = \sum_{i=1}^{X_{n-1}} \xi_{n,i} + \varepsilon_n, \qquad n \in \mathbb{N} := \{1, 2, \ldots\},$$
$$\sum_{i=1}^{0} \xi_{n,i} := 0,$$

 $\{\xi_{n,i}, \varepsilon_n : n, i \in \mathbb{N}\}$ independent rv's with values in $\mathbb{Z}_+ := \{0, 1, 2, ...\},$ $\{\xi_{n,i} : n, i \in \mathbb{N}\}$ identically distributed, $\{\varepsilon_n : k \in \mathbb{N}\}$ identically distributed.

If $\varepsilon_n = 0$, $n \in \mathbb{N}$, then it is a GW process.

For notational convenience, let ξ and ε be random variables such that $\xi \stackrel{\mathcal{D}}{=} \xi_{1,1}$ and $\varepsilon \stackrel{\mathcal{D}}{=} \varepsilon_1$, and put

$$m_{\xi} := \mathbb{E}(\xi) \in [0,\infty], \qquad m_{\varepsilon} := \mathbb{E}(\varepsilon) \in [0,\infty].$$

Under which conditions is the distribution of a not necessarily stationary GWI process is regularly varying at any fixed time, i.e.,

$$\lim_{x \to \infty} \frac{\mathbb{P}(X_n > qx)}{\mathbb{P}(X_n > x)} = q^{-\alpha} \quad \text{for all } q \in \mathbb{R}_{++} := (0, \infty)$$

for each $n \in \mathbb{N}$ with some $\alpha \in \mathbb{R}_+ := [0, \infty)$?

Regularly varying offspring distribution (BBP 2018+)

- Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that
 - ξ is regularly varying with index $\alpha \in [1, \infty)$,

2)
$$m_{\xi} \in \mathbb{R}_{++}$$
 in case of $\alpha = 1$,

(3) there exists $r \in (\alpha, \infty)$ with $\mathbb{E}(X_0^r) < \infty$ and $\mathbb{E}(\varepsilon^r) < \infty$,

●
$$\mathbb{P}(X_0 = 0) < 1$$
 or $\mathbb{P}(\varepsilon = 0) < 1$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \mathbb{E}(X_0) m_{\xi}^{n-1} \sum_{i=0}^{n-1} m_{\xi}^{(lpha-1)i} \mathbb{P}(\xi > x)
onumber \ + m_{\varepsilon} \sum_{i=1}^{n-1} m_{\xi}^{n-i-1} \sum_{i=0}^{n-i-1} m_{\xi}^{(lpha-1)j} \mathbb{P}(\xi > x)$$

as $x \to \infty$, and hence X_n is also regularly varying with index α .

Additivity of GWI processes

If $(X_n)_{n \in \mathbb{Z}_+}$ is a GWI process, then for each $n \in \mathbb{N}$, we have $X_n = V^{(n)}(X_0) + \sum_{i=1}^n V_i^{(n-i)}(\varepsilon_i),$

where $\{V^{(n)}(X_0), V_i^{(n-i)}(\varepsilon_i) : i \in \{1, ..., n\}\}$ are independent and

- $V^{(n)}(X_0)$ represents the number of individuals alive at time *n*, resulting from the initial individuals X_0 at time 0,
- $V_i^{(n-i)}(\varepsilon_i)$ represents the number of individuals alive at time *n*, resulting from the immigration ε_i at time *i*.

Moreover,

$$V^{(n)}(X_0) \stackrel{\mathcal{D}}{=} \sum_{\ell=1}^{X_0} \zeta_{\ell}^{(n)}, \qquad V_i^{(n-i)}(\varepsilon_i) \stackrel{\mathcal{D}}{=} \sum_{\ell=1}^{\varepsilon_i} \zeta_{\ell}^{(n-i)},$$

where $\{\zeta_{\ell}^{(n-i)} : i \in \{0, 1, ..., n\}, \ell \in \mathbb{N}\}$ are independent copies of Y_{n-i} such that $(Y_j)_{j \in \mathbb{Z}_+}$ is a GW process with initial value $Y_0 = 1$ and with the same offspring distribution as $(X_k)_{k \in \mathbb{Z}_+}$.

• If X is a non-negative regularly varying random variable with index $\alpha \in \mathbb{R}_{++}$, then

$$\mathbb{E}(X^{\beta}) \begin{cases} < \infty & \text{for all } \beta \in (-\infty, \alpha), \\ = \infty & \text{for all } \beta \in (\alpha, \infty). \end{cases}$$

2 If X and Y are non-negative random variables such that X is regularly varying with index $\alpha \in \mathbb{R}_+$ and there exists $r \in (\alpha, \infty)$ with $\mathbb{E}(Y^r) < \infty$, then

$$\mathbb{P}(Y > x) = o(\mathbb{P}(X > x))$$
 as $x \to \infty$.

● If X_1 and X_2 are non-negative regularly varying random variables with index $\alpha_1 \in \mathbb{R}_+$ and $\alpha_2 \in \mathbb{R}_+$, respectively, such that $\alpha_1 < \alpha_2$, then

$$\mathbb{P}(X_2 > x) = o(\mathbb{P}(X_1 > x))$$
 as $x \to \infty$.

● If X_1 and X_2 are non-negative random variables such that X_1 is regularly varying with index $\alpha \in \mathbb{R}_+$ and there exists $r \in (\alpha, \infty)$ with $\mathbb{E}(X_2^r) < \infty$, then

 $\mathbb{P}(X_1 + X_2 > x) \sim \mathbb{P}(X_1 > x)$ as $x \to \infty$,

and hence $X_1 + X_2$ is regularly varying with index α .

2 If X_1 and X_2 are independent non-negative regularly varying random variables with index $\alpha \in \mathbb{R}_+$, then

$$\mathbb{P}(X_1+X_2>x)\sim \mathbb{P}(X_1>x)+\mathbb{P}(X_2>x) \qquad ext{as } x o\infty,$$

hence $X_1 + X_2$ is regularly varying with index α .

Regularly varying random sums (Faÿ et al. 2006, Robert and Segers 2008, Denisov, Foss and Korshunov 2010)

Let τ be a non-negative integer-valued r.v. and let $\{\zeta, \zeta_i : i \in \mathbb{N}\}$ be i.i.d. non-negative r.v., independent of τ .

• If τ is regularly varying with index $\beta \in \mathbb{R}_+$, $\mathbb{E}(\zeta) \in \mathbb{R}_{++}$ and there exists $r \in (\beta, \infty)$ with $\mathbb{E}(\zeta^r) < \infty$, then

$$\mathbb{P}\left(\sum_{i=1}^{\tau}\zeta_i > x\right) \sim \mathbb{P}\left(\tau > \frac{x}{\mathbb{E}(\zeta)}\right) \sim (\mathbb{E}(\zeta))^{\beta} \mathbb{P}(\tau > x) \quad \text{as } x \to \infty.$$

2 If ζ is regularly varying with index $\alpha \in [1, \infty)$, $\mathbb{E}(\zeta) \in \mathbb{R}_{++}$, $\mathbb{P}(\tau = 0) < 1$ and there exists $r \in (\alpha, \infty)$ with $\mathbb{E}(\tau^r) < \infty$, then

$$\mathbb{P}\left(\sum_{i=1}^{\tau}\zeta_i > x\right) \sim \mathbb{E}(\tau) \mathbb{P}(\zeta > x) \quad \text{as } x \to \infty.$$

Solution If *τ* and *ζ* are regularly varying with index *β* ∈ [1,∞), P(*ζ* > *x*) = O(P(*τ* > *x*)) as *x* → ∞ and E(*τ*), E(*ζ*) ∈ R₊₊, then P(∑_{i=1}^{*τ*} *ζ_i* > *x*) ~ E(*τ*) P(*ζ* > *x*) + (E(*ζ*))^{*β*} P(*τ* > *x*) as *x* → ∞.

Barczy, Bősze, Pap (Szeged)

• By the additivity:

$$X_n \stackrel{\mathcal{D}}{=} V^{(n)}(X_0) + \sum_{i=1}^n V_i^{(n-i)}(\varepsilon_i)$$

with

$$V^{(n)}(X_0) \stackrel{\mathcal{D}}{=} \sum_{\ell=1}^{X_0} \zeta_{\ell}^{(n)}, \qquad V_i^{(n-i)}(\varepsilon_i) \stackrel{\mathcal{D}}{=} \sum_{\ell=1}^{\varepsilon_i} \zeta_{\ell}^{(n-i)},$$

where $\{\zeta_{\ell}^{(n-i)} : i \in \{0, 1, ..., n\}, \ell \in \mathbb{N}\}$ are independent copies of Y_{n-i} such that $(Y_j)_{j \in \mathbb{Z}_+}$ is a GW process with initial value $Y_0 = 1$ and with the same offspring distribution as $(X_k)_{k \in \mathbb{Z}_+}$.

- We prove $\mathbb{P}(Y_j > x) \sim m_{\xi}^{j-1} \sum_{i=0}^{j-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x)$ by induction:
 - For j = 1 obvious, since $Y_1 = \xi_{1,1}$.
 - Induction hypothesis: the statement holds for $\{1, \ldots, j-1\}$.
 - By the Markov property, we have $Y_j \stackrel{\mathcal{D}}{=} V^{(j-1)}(\xi_{1,1})$, where $(V^{(k)}(\xi_{1,1}))_{k \in \mathbb{Z}_+}$ is GW process with initial value $V^{(0)}(\xi_{1,1}) = \xi_{1,1}$.
 - By the additivity: $V^{(j-1)}(\xi_{1,1}) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\xi_{1,1}} \zeta_i^{(j-1)}$, where $\{\zeta_i^{(j-1)} : i \in \mathbb{N}\}$ are independent copies of Y_{j-1} such that $\{\xi_{1,1}, \zeta_i^{(j-1)} : i \in \mathbb{N}\}$ are independent.
 - By the induction hypothesis:

 $\mathbb{P}(\zeta_i^{(j-1)} > x) = \mathbb{P}(Y_{j-1} > x) = O(\mathbb{P}(\xi > x))$ as $x \to \infty$, thus by the regularly varying random sums and the induction hypothesis,

$$\mathbb{P}(Y_{j} > x) = \mathbb{P}\left(\sum_{i=1}^{\xi_{1,1}} \zeta_{i}^{(j-1)} > x\right) \sim \mathbb{E}(\xi_{1,1}) \mathbb{P}(\zeta_{1}^{(j-1)} > x) + (\mathbb{E}(\zeta_{1}^{(j-1)}))^{\alpha} \mathbb{P}(\xi_{1,1} > x) \\ \sim m_{\xi} \mathbb{P}(Y_{j-1} > x) + m_{\xi}^{(j-1)\alpha} \mathbb{P}(\xi > x) \sim m_{\xi}^{j-1} \sum_{i=0}^{j-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x).$$

By the regularly varying random sums,

$$\mathbb{P}(V_i^{(n-i)}(\varepsilon_i) > x) \sim \mathbb{E}(\xi_{1,1}) \mathbb{P}(\zeta_1^{(n-i)} > x) \sim m_{\varepsilon} \mathbb{P}(Y_{n-i} > x).$$

Regularly varying initial distribution (BBP 2018+)

Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that

() X_0 is regularly varying with index $\beta \in \mathbb{R}_+$,

2
$$\mathbb{P}(\xi = 0) < 1$$
,

③ there exists *r* ∈ (1 ∨ β, ∞) with $\mathbb{E}(\xi^r) < \infty$ and $\mathbb{E}(\varepsilon^r) < \infty$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim m_{\varepsilon}^{n_{eta}} \mathbb{P}(X_0 > x) \quad \text{as } x \to \infty,$$

and hence X_n is also regularly varying with index β .

Regularly varying immigration distribution (BBP 2018+)

Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that

- **(**) ε is regularly varying with index $\gamma \in \mathbb{R}_+$,
- **2** $\mathbb{P}(\xi = 0) < 1$,
- **③** there exists *r* ∈ (1 ∨ γ, ∞) with $\mathbb{E}(\xi^r) < \infty$ and $\mathbb{E}(X_0^r) < \infty$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \sum_{i=1}^n m_{\xi}^{(n-i)\gamma} \mathbb{P}(\varepsilon > x) \quad \text{as } x \to \infty,$$

and hence X_n is also regularly varying with index γ .

Regularly varying offspring and initial distributions (BBP 2018+)

Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that

- **1** X_0 and ξ are regularly varying with index $\alpha \in [1, \infty)$,
- **2** $\mathbb{E}(X_0) \in \mathbb{R}_{++}$ and $m_{\xi} \in \mathbb{R}_{++}$ in case of $\alpha = 1$,
- there exists $r \in (\alpha, \infty)$ such that $\mathbb{E}(\varepsilon^r) < \infty$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \mathbb{E}(X_0) m_{\xi}^{n-1} \sum_{i=0}^{n-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x) + m_{\xi}^{n\alpha} \mathbb{P}(X_0 > x) \\ + m_{\varepsilon} \sum_{i=1}^{n-1} m_{\xi}^{n-i-1} \sum_{i=0}^{n-i-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x)$$

as $x \to \infty$, and hence X_n is also regularly varying with index α .

Regularly varying offspring and immigration (BBP 2018+)

- Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that
 - **(**) ξ and ε are regularly varying with index $\alpha \in [1, \infty)$,

$$\textbf{0} \quad m_{\xi} \in \mathbb{R}_{++} \text{ and } m_{\varepsilon} \in \mathbb{R}_{++} \text{ in case of } \alpha = 1,$$

- there exists $r \in (\gamma, \infty)$ with $\mathbb{E}(X_0^r) < \infty$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \mathbb{E}(X_0) m_{\xi}^{n-1} \sum_{i=0}^{n-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x) \\ + m_{\varepsilon} \sum_{j=1}^{n-1} m_{\xi}^{n-j-1} \sum_{i=0}^{n-j-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x) + \sum_{j=1}^{n} m_{\xi}^{(n-j)\alpha} \mathbb{P}(\varepsilon > x)$$

as $x \to \infty$, and hence X_n is also regularly varying with index α .

Regularly varying initial value and immigration (BBP 2018+)

Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that

- **(0)** X_0 and ε are regularly varying with index $\beta \in \mathbb{R}_+$,
- **2** $\mathbb{P}(\xi = 0) < 1$,
- **ම** there exists $r \in (1 \lor \beta, \infty)$ with $\mathbb{E}(\xi^r) < \infty$.

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim m_{\xi}^{n\beta} \mathbb{P}(X_0 > x) + \sum_{i=1}^n m_{\xi}^{(n-i)\beta} \mathbb{P}(\varepsilon > x) \quad \text{as } x \to \infty,$$

and hence X_n is also regularly varying with index β .

Regularly varying initial, offspring and immigration distributions (BBP 2018+)

- Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that
 - **(**) X_0 , ξ and ε are regularly varying with index $\alpha \in [1, \infty)$,
 - 2 $\mathbb{E}(X_0) \in \mathbb{R}_{++}, \ m_{\xi} \in \mathbb{R}_{++}$ and $m_{\varepsilon} \in \mathbb{R}_+$ in case of $\alpha = 1$,
 - $\ \ \, {\mathbb O}(\xi>x)={\rm O}({\mathbb P}(X_0>x)) \ \, {\rm as} \ \ x\to\infty \ \, {\rm and} \ \ {\mathbb P}(\xi>x)={\rm O}({\mathbb P}(\varepsilon>x)) \ \, {\rm as} \ \ x\to\infty.$

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \mathbb{E}(X_0) m_{\xi}^{n-1} \sum_{i=0}^{n-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x) + m_{\xi}^{n\alpha} \mathbb{P}(X_0 > x) \\ + m_{\varepsilon} \sum_{j=1}^{n-1} m_{\xi}^{n-j-1} \sum_{i=0}^{n-j-1} m_{\xi}^{(\alpha-1)i} \mathbb{P}(\xi > x) + \sum_{j=1}^{n} m_{\xi}^{(n-j)\alpha} \mathbb{P}(\varepsilon > x)$$

as $x \to \infty$, and hence X_n is also regularly varying with index α .

Second order GWI process

$$X_n = \sum_{i=1}^{X_{n-1}} \xi_{n,i} + \sum_{i=1}^{X_{n-2}} \eta_{n,i} + \varepsilon_n, \qquad n \in \mathbb{N},$$

where $\{\xi_{n,i}, \eta_{n,i}, \varepsilon_n : n, i \in \mathbb{N}\}$ independent rv's with values in \mathbb{Z}_+ ,

 $\{\xi_{n,i}: n, i \in \mathbb{N}\}$ identically distributed,

 $\{\eta_{n,i} : n, i \in \mathbb{N}\}\$ identically distributed,

 $\{\varepsilon_n : k \in \mathbb{N}\}$ identically distributed.

$(X_n)_{n \ge -1}$ is a second order Markov chain

2-type representation

Put

$$\boldsymbol{Z}_n := \begin{bmatrix} Z_{n,1} \\ Z_{n,2} \end{bmatrix} := \begin{bmatrix} X_n \\ X_{n-1} \end{bmatrix}, \qquad n \in \mathbb{Z}_+.$$

This yields

$$\boldsymbol{Z}_{n} = \sum_{i=1}^{Z_{n-1,1}} \begin{bmatrix} \xi_{n,i} \\ 1 \end{bmatrix} + \sum_{i=1}^{Z_{n-1,2}} \begin{bmatrix} \eta_{n,i} \\ 0 \end{bmatrix} + \begin{bmatrix} \varepsilon_{n} \\ 0 \end{bmatrix}, \qquad n \in \mathbb{N},$$

hence $(\boldsymbol{Z}_n)_{n \in \mathbb{Z}_+}$ is a 2-type GWI process with initial vector $\boldsymbol{Z}_0 = \begin{bmatrix} X_0 \\ X_{-1} \end{bmatrix}$, which is a Markov chain.

Offspring mean matrix:

$$oldsymbol{M}_{\xi,\eta} := egin{bmatrix} m_{\xi} & m_{\eta} \ 1 & 0 \end{bmatrix}$$

with $m_{\xi} := \mathbb{E}(\xi_{1,1}) \in [0,\infty]$ and $m_{\eta} := \mathbb{E}(\eta_{1,1}) \in [0,\infty].$

Expectation of a second order GW process

If $(Y_n)_{n \ge -1}$ is a second-order GW process with $m_{\xi}, m_{\eta} \in \mathbb{R}_+$ satisfying $m_{\xi} + m_{\eta} > 0$ and with initial values $Y_0 = 1, Y_{-1} = 0$, then

$$m_n := \mathbb{E}(Y_n) = rac{\lambda_+^{n+1} - \lambda_-^{n+1}}{\lambda_+ - \lambda_-}, \qquad n \in \mathbb{N},$$

where

$$\lambda_{+} := \frac{m_{\xi} + \sqrt{m_{\xi}^{2} + 4m_{\eta}}}{2} \in \mathbb{R}_{++}, \quad \lambda_{-} := \frac{m_{\xi} - \sqrt{m_{\xi}^{2} + 4m_{\eta}}}{2} \in (-\lambda_{+}, 0]$$
are the eigenvalues of $M_{\xi,\eta}$.

Indeed, $\mathbb{E}(Y_n) = m_{\xi} \mathbb{E}(Y_{n-1}) + m_{\eta} \mathbb{E}(Y_{n-2})$, which can be written in the matrix form

$$\begin{bmatrix} \mathbb{E}(Y_n) \\ \mathbb{E}(Y_{n-1}) \end{bmatrix} = \boldsymbol{M}_{\xi,\eta} \begin{bmatrix} \mathbb{E}(Y_{n-1}) \\ \mathbb{E}(Y_{n-2}) \end{bmatrix} \quad \text{implying} \quad \begin{bmatrix} \mathbb{E}(Y_n) \\ \mathbb{E}(Y_{n-1}) \end{bmatrix} = \boldsymbol{M}_{\xi,\eta}^n \begin{bmatrix} \mathbb{E}(Y_0) \\ \mathbb{E}(Y_{-1}) \end{bmatrix}$$

Regularly varying initial, offspring and immigration distributions (Bősze and P 2018+)

- Let $(X_n)_{n \ge -1}$ be a second order GWI process such that
 - **(**) X_0 , X_{-1} , ξ , η and ε are regularly varying with index $\alpha \in [1, \infty)$,

 - - $\mathbb{P}(\eta > x) = \mathsf{O}(\mathbb{P}(X_0 > x)), \ \mathbb{P}(\eta > x) = \mathsf{O}(\mathbb{P}(X_{-1} > x)),$
 - $\mathbb{P}(\xi > x) = \mathsf{O}(\mathbb{P}(\varepsilon > x)) \text{ and } \mathbb{P}(\eta > x) = \mathsf{O}(\mathbb{P}(\varepsilon > x)) \text{ as } x \to \infty.$

Then for each $n \in \mathbb{N}$, we have

$$\mathbb{P}(X_n > x) \sim \begin{bmatrix} \mathbb{E}(X_0) \\ \mathbb{E}(X_{-1}) \end{bmatrix}^\top \sum_{k=0}^{n-1} m_k^{\alpha} (\boldsymbol{M}_{\xi,\eta}^{n-k-1})^\top \begin{bmatrix} \mathbb{P}(\xi > x) \\ \mathbb{P}(\eta > x) \end{bmatrix} \\ + \begin{bmatrix} m_{\varepsilon} \\ 0 \end{bmatrix}^\top \sum_{i=1}^{n-1} \sum_{j=0}^{n-i-1} m_j^{\alpha} (\boldsymbol{M}_{\xi,\eta}^{n-j-1})^\top \begin{bmatrix} \mathbb{P}(\xi > x) \\ \mathbb{P}(\eta > x) \end{bmatrix} \\ + m_n^{\beta} \mathbb{P}(X_0 > x) + m_{n-1}^{\alpha} m_{\eta}^{\alpha} \mathbb{P}(X_{-1} > x) + \sum_{i=1}^{n} m_{n-i}^{\alpha} \mathbb{P}(\varepsilon > x).$$

Tail behavior of the stationary distribution of a GWI (Basrak, Kulik and Palmowski 2013)

- Let $(X_n)_{n \in \mathbb{Z}_+}$ be a GWI process such that
 - **1** $m_{\xi} \in (0, 1),$
 - **2** ε is regularly varying with index $\alpha \in (0, 2)$,
 - **3** $\mathbb{E}(\xi^2) < \infty$ in case of $\alpha \in [1, 2)$.

Then the tail of the unique stationary distribution μ of $(X_n)_{n \in \mathbb{Z}_+}$ satisfies

$$\mu((x,\infty))\sim \sum_{i=0}^\infty m_\xi^{ilpha}\,\mathbb{P}(arepsilon>x)=rac{\mathbb{P}(arepsilon>x)}{1-m_\xi^lpha}\qquad ext{as}\ \ x o\infty,$$

and hence μ is also regularly varying with index α .

- The above result is valid also for $\alpha \in [2,3)$ under the additional assumption $\mathbb{E}(\xi^3) < \infty$.
- The same seems to apply also for α ∈ [3,∞) possibly under the additional assumption E(ξ^{[α]+1}) < ∞.

Stationary distribution of the 2-type representation of a second order GWI process

Let $(X_n)_{n \ge -1}$ be a second order GWI process such that

)
$$m_{\xi} \in \mathbb{R}_{++}, \ m_{\eta} \in \mathbb{R}_{++}, \ m_{\xi} + m_{\eta} < 1,$$

$$\ \ \, \mathbb{P}(\varepsilon=0)<1 \ \ \, \text{and} \ \ \, \mathbb{E}(\mathbb{1}_{\{\varepsilon\neq 0\}}\log(\varepsilon))<\infty.$$

Then there exists a unique stationary distribution π for the Markov chain

$$\left[\begin{bmatrix} X_n \\ X_{n-1} \end{bmatrix} \right]_{n \in \mathbb{Z}_+}$$

Moreover, the marginals of π are the same distributions μ , admitting the representation ∞

$$\mu \stackrel{\mathcal{D}}{=} \sum_{i=0}^{\infty} V_i^{(i)}(\varepsilon_i),$$

where $(V_k^{(i)}(\varepsilon_i))_{k \ge -1}$, $i \in \mathbb{Z}_+$, are independent copies of $(Y_k(\varepsilon))_{k \ge -1}$, which is a second-order GW process with initial values $Y_0(\varepsilon) = \varepsilon$ and $Y_{-1}(\varepsilon) = 0$, and with the same offspring distributions as $(X_k)_{k \ge -1}$.

Tail behavior of the stationary distribution of the 2-type representations of second order GWI processes (BBP 2018+)

Let $(X_n)_{n \in \mathbb{Z}_+}$ be a second order GWI process such that

0
$$m_{\xi} \in \mathbb{R}_{++}, \ m_{\eta} \in \mathbb{R}_{++}, \ m_{\xi} + m_{\eta} < 1,$$

- **2** ε is regularly varying with index $\alpha \in (0, 2)$,
- $\ \ \, {\mathbb S} \ \ \, {\mathbb E}(\xi^2)<\infty \ \ \, {\rm and} \ \ \, {\mathbb E}(\eta^2)<\infty \ \ \, {\rm in \ case \ of} \ \ \alpha\in[1,2).$

Then the tail of the marginals μ of the unique stationary distribution π of the Markov chain

$$\begin{pmatrix} \begin{bmatrix} X_n \\ X_{n-1} \end{bmatrix} \end{pmatrix}_{n \in \mathbb{Z}_+}$$

satisfies

$$\mu((x,\infty))\sim \sum_{i=0}^\infty m_i^lpha\,\mathbb{P}(arepsilon>x)\qquad ext{as } x o\infty,$$

and hence μ is also regularly varying with index α .

- The tail behavior of the stationary distribution of the 2-type representation of a second order GWI process is the limit as n→∞ of the corresponding tail behavior of non-stationary processes.
- In all results for second order processes, if we assume that η = 0, we get back formally the results for first order processes.
- The same techniques can be used for higher order GWI processes.
- Joint regular variation for (general) 2-type GWI processes?

References

- BARCZY, M., BŐSZE, ZS. and PAP, G. (2018+).
 Regularly varying non-stationary Galton–Watson processes with immigration. To appear in: *Statistics & Probability Letters* http://arxiv.org/abs/1801.04002
 - BARCZY, M., BŐSZE, ZS. and PAP, G. (2018+). On tail behavior of stationary second-order Galton–Watson processes with immigration.

http://arxiv.org/abs/1801.07931

- BASRAK, B., KULIK, R. and PALMOWSKI, Z. (2013). Heavy-tailed branching process with immigration. *Stochastic Models* 29(4) 413–434.
 - WACHTEL, V. I., DENISOV, D. and KORSHUNOV, D. (2013). Tail asymptotics for the supercritical Galton–Watson process in the heavy-tailed case. *Proceedings of the Steklov Institute of Mathematics* 282 273–297.

DENISOV, D., FOSS, S. and KORSHUNOV, D. (2010). Asymptotics of randomly stopped sums in the presence of heavy tails. *Bernoulli* **16(4)** 971–994.

 FAŸ, G., GONZÁLEZ-ARÉVALO, B., MIKOSCH, T. and SAMORODNITSKY, G. (2006).
 Modeling teletraffic arrivals by a Poisson cluster process. *Queueing Systems* 54 121–140.

ROBERT, C. Y. and SEGERS, J. (2008)

Tails of random sums of a heavy-tailed number of light-tailed terms. *Insurance: Mathematics and Economics* **43** 85–92.

EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin.

Thank you for your attention!