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Tail behaviour of
@ GWI processes admitting regularly varying

e offspring distribution
e initial distribution
e immigration distribution

@ second order GWI processes
@ stationary distribution of second order GWI processes
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Galton—Watson branching process with immigration

GWI process

Xn—1
Xo= &niten, neN:={12.},
0 i=1
where > &,;:=0,

i=1

{¢n,i, en s n,i € N} independent rv’s with values in Z, := {0,1,2,...},
{€ni: n,i e N} identically distributed,
{en : k € N} identically distributed.

If e=0, neN, thenitis a GW process.

For notational convenience, let £ and ¢ be random variables such
that 52 §11 and ¢ 2 €1, and put

me =E(€) € [0,00],  m. = E(e) € [0, 0].
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Under which conditions is the distribution of a not necessarily
stationary GWI process is regularly varying at any fixed time, i.e.,

im P(X, > gx)

Jm B sxy —9° foral geR. = (0.00)

foreach ne N with some o € R, :=[0,00) ?
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Regularly varying offspring distribution (BBP 2018+)
Let (Xn)nez, be a GWI process such that

@ ¢ isregularly varying with index « € [1, 00),

Q@ m: eR;; incaseof a=1,

© there exists r € (o, 00) with E(X}) < oo and E(e") < oo,
Q P(Xo=0)<1 or Pe=0) < 1.
Then for each n € N, we have

n—1
P(Xp > x) ~ E(Xo)m? ™" > m* VP > x)
i=0
n—i—1
+mazmn i—1 Z m(a Nip P(¢ > X)
i=1 /=0

as x — oo, and hence X, is also regularly varying with index «.
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Additivity of GWI processes

If (Xn)nez, is a GWI process, then for each n € N, we have
n
Xn= VO (Xo) + 3 V" (ey),
i=1
where {V(M(Xo), V" V(e;):ie{1,...,n}} are independent and
e V(N(Xy) represents the number of individuals alive at time n,
resulting from the initial individuals X, attime O,

° \/,(”")(s;) represents the number of individuals alive at time n,

resulting from the immigration ¢; attime i.
Moreover,

Xo
V(n)(XO) 2 chgn)’ V(n I) ZC(D i

where {¢{" e {0,1,.. ,n}, 0 €N} are mdependent copies of
Yoo; such that (Y})jcz, is a GW process with initial value Yy =1
and with the same offspring distribution as (Xk)xez, -

v

Barczy, Bésze, Pap (Szeged) Badajoz 2018 6/28



Moments and regular variation

@ If X is a non-negative regularly varying random variable with
index a € Ry, then
< oo forall g e (—o0,a),
6 f € (~00,0)
=oo forall g e (a,).

@ If X and Y are non-negative random variables such that X is
regularly varying with index « € R; and there exists r € (a, c0)
with E(Y") < oo, then

P(Y > x) = o(P(X > x)) as x — oo.

@ If X; and X5 are non-negative regularly varying random
variables with index a4y € Ry and as € Ry, respectively, such
that a1 < o, then

P(Xo > x) = o(P(X7 > x)) as x — oo.
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Convolution property

@ If X; and X, are non-negative random variables such that X; is
regularly varying with index o € R, and there exists r € («a, )
with E(XJ) < oo, then

P(X1 4+ Xo > x) ~ P(X1 > x) as x — oo,
and hence Xi + Xy is regularly varying with index «.

@ If Xy and X, are independent non-negative regularly varying
random variables with index a € R, then

P(X1 + Xo > x) ~ P(X7 > x) + P(Xz > x) as x — oo,
hence Xj + X is regularly varying with index a.
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Regularly varying random sums (Fay et al. 2006, Robert and

Segers 2008, Denisov, Foss and Korshunov 2010)

Let 7 be a non-negative integer-valued r.v. and let {¢,{;: i € N} be
i.i.d. non-negative r.v., independent of 7.

@ If 7 isregularly varying with index g€ R, E(¢) € R;, and
there exists r € (3,00) with E(¢") < oo, then

P(ég‘; > x> NP(T > E?C)) ~ (E(Q))PP(r>x)  as x = oo

@ If ¢ isregularly varying with index « € [1,00), E(¢) € R4,
P(r =0) <1 and there exists r € (a,00) with E(7") < oo, then

]P’(ZT:C,->X> ~ E(T)P(¢ > x) as x — oo.
i=1

Q If 7 and ¢ are regularly varying with index f € [1, 00),
P(¢ > x) = O(P(r > x)) as x — oo and E(7),E(¢) € R4+4, then

<ZC/>X> ~E(T)P(¢ > x) + (E(Q)°P(r >x) as x — oo.

Barczy, Bésze, Pap (Szeged) Badajoz 2018 9/28




Sketch of proof

@ By the additivity:

n
Xo 2 VO (Xo) + 3 v (e))

i=1

with

gj

VOe) 2300 Ve =30 Y,
=1

=1

where {Cé”_i) :i€{0,1,...,n},¢ € N} are independent copies of
Yn—i suchthat (Y));cz, is a GW process with initial value Yy =1
and with the same offspring distribution as (Xk)xez, -
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@ Weprove P(Y; > x) ~m| ' Sy m® V' P(¢ > x) by induction:
e For j=1 obvious, since Y; =¢ 1.
e Induction hypothesis: the statement holds for {1,...,j —1}.

o By the Markov property, we have Y; 2 VU="(¢ 1), where
(V&1 1))kez, is GW process with initial value VO(& 1) = &1

e By the additivity: VU="(¢4) 2351 ¢V where {¢V™":ieN}
are independent copies of Y;_; such that {61,1,(,-(’_1) i€ N} are
independent.

e By the induction hypothesis:
PV > x) = P(Yj_1 > x) = O(P(¢ > X)) as X — oo, thus by
the regularly varying random sums and the induction hypothesis,
SR ) )
(%> 20 = B(3_60" > x) ~ Bl ) P > 20+ B )" Fers > 0
i:1 . 17 .
~meP(Yj_1 > x)+ m TDOP(E > x) ~ m’{1 Zmé“’”’]?(f > X).
i=0
@ By the regularly varying random sums, :
POV" (i) > x) ~ E(&,0) B > X) ~ mP(Y > X).
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Regularly varying initial distribution (BBP 2018+)
Let (Xn)nez, be a GWI process such that

@ X, isregularly varying with index 3 € R,

Q P({=0)<1,

© there exists r € (1V ,00) with E(¢") < oo and E(e") < oc.

Then for each n € N, we have
P(Xy > x) ~ m°P(Xo>X)  as X — oo,

and hence X, is also regularly varying with index 4.
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Regularly varying immigration distribution (BBP 2018+)
Let (Xn)nez, be a GWI process such that

@ ¢ is regularly varying with index ~ € R,

Q P({=0) <1,

© there exists r € (1V,00) with E(¢") < oo and E(X{) < co.
Then for each n € N, we have

n
P(Xp > x)~ > mé”*’)” P(e >x) as x — oo,
i=1

and hence X, is also regularly varying with index ~.
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Regularly varying offspring and initial distributions (BBP 2018+)
Let (Xn)nez, be a GWI process such that

@ Xp and ¢ are regularly varying with index « € [1, c0),

Q E(X) €Rit and m: e R4 incaseof a=1,

Q P(¢ > x) =0(P(Xp > x)) as x — oo,

Q there exists r € (a,00) suchthat E(e") < oc.
Then for each n € N, we have

P(X, > X) ~ E(Xo)m{~ ‘Zm(“ DTP(¢ > x) + mPeP(Xo > X)
i=0
n—i—1

+mazmn i—1 Z m(a Nip P(¢ > X)

i=1 /=0

as x — oo, and hence X, is also regularly varying with index «.
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Regularly varying offspring and immigration (BBP 2018+)
Let (Xn)nez, be a GWI process such that

@ ¢ and e are regularly varying with index «a € [1, ),

@ m:cR,; and m. € R, incaseof a=1,

Q P(¢ > x) =0O(P(e > x)) as x — oo,

Q there exists r € (y,00) with E(X]) < oo
Then for each n e N, we have

n—1
P(Xn > X) ~E(Xo)m ™" S" m* V' p(e > x)
i=0
+m€Zm” -1 Z m(o‘ Vipee > x) +Zm(" Dap(e > x)

j=1 i=0 j=1

as x — oo, and hence X, is also regularly varying with index «.
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Regularly varying initial value and immigration (BBP 2018+)
Let (Xn)nez, be a GWI process such that
@ X, and ¢ are regularly varying with index 8 € R,
Q PE¢=0)<1,
Q there exists r € (1V 8,00) with E(¢") < oc.
Then for each n € N, we have

n
P(Xp > x) ~ mPP(Xo > x) + Y m{" "V B(e > x)

i=1

and hence X, is also regularly varying with index .

as X — oo,
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Regularly varying initial, offspring and immigration distributions

(BBP 2018+)

Let (Xn)nez, be a GWI process such that
@ Xy, £ and ¢ are regularly varying with index «a € [1, ),
Q E(Xo) R4y, m¢ R,y and m. € Ry incase of a =1,

Q P(¢ > x)=0(P(Xp > x)) as x — oo and
P(¢ > x) = O(P(e > x)) as x — oc.

Then for each n € N, we have

P(X, > x) ~ E(Xo)m™ 1Zm(°‘ VB(¢ > x) + mPP(Xo > X)
i=0
+m€Zm”’ ! Z m(o‘ Vipe > x) +Zm(" Dap(e > x)

j=1 i=0 j=1

as x — oo, and hence X, is also regularly varying with index «.

v
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Second order GWI process

Xn—1 Xn—2
Xn: an,i"‘ZUn,i‘f‘En; n€N7
i=1 i=1

where {&ni,mn, €n : N, i € N} independent rv’s with values in Z,
{&n,i : n,i € N} identically distributed,

{nnj: n,i e N} identically distributed,

{en : k € N} identically distributed.

(Xn)n=—1 is a second order Markov chain J
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2-type representation

Put
V4 X
Z, = m}::[ n], nez,.
" [Zn,2 an1 *

This yields
Zn_1,1 ¢ Zn_1,2 0 -
_ n,i n,i n
Z= 3 KK > ] nen
hence (Zn)nez, is a 2-type GWI process with initial vector Zy = [;0 ] ,
—1
which is a Markov chain.

Offspring mean matrix:

me m
M, = [ 15 077}

with mg ;= E(¢14) € [0,00] and m,, :=E(n1.1) € [0,00].
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Expectation of a second order GW process

If (Yn)n>—1 is asecond-order GW process with mg, m, € R,
satisfying m¢ +m, > 0 and with initial values Yo =1, Y_4 =0, then
)\n+1 - )\fl—‘r‘l
mp ::]E(Yn):J;\_i_T’ nEN,
where
me + /M2 +4m, me — /M2 + 4my,
)\_|_ = 25 € R++, Al = 25 € (—>\+,O]
are the eigenvalues of M, .

Indeed, E(Yn) = m:E(Y,_1) + m,E(Y,_2), which can be written in
the matrix form

svin| = Mea gy )] meing || =m0
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Regularly varying initial, offspring and immigration distributions

(Bbsze and P 2018+)
Let (Xh)n>—1 be a second order GWI process such that
Q@ Xo, X4, & n and e are regularly varying with index « € [1, o0),
Q E(Xp),E(X_1),m;,m. e R,y and m, € R,
@ P(¢ > x) = O(P(Xp > x)), B(¢ > x) = O(B(X_; > X)),
P(n > x) = O(P(Xo > X)), P(n > x) = O(P(X_1 > X)),
P& > x) = O(P(e > x)) and P(n > x) = O(P(e > x))
Then for each n € N, we have

as X — o0.

P(Xn > X) ~ [X_1)]T:Z;mimnk1 E;gf;ig]
[ ]Tinjio1men/1 [ﬁgf]iig]

n
+myP(Xo > X)+ my_myP(X_q > x)+ > miy_;P(e > X).
i=
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Tail behavior of the stationary distribution of a GWI

(Basrak, Kulik and Palmowski 2013)

Let (Xn)nez, be a GWI process such that

Q@ me €(0,1),

Q@ ¢ is regularly varying with index «a € (0, 2),
Q E(£2) < oo incase of a € [1,2).

Then the tail of the unique stationary distribution p of (Xp)nez,
satisfies

IP’(E>X)
m - @7
1((x,0)) Z (e > x) 1= me as X — oo,

and hence p is also regularly varying with index «.

@ The above result is valid also for « € [2,3) under the additional
assumption E(£%) < .

@ The same seems to apply also for a € [3,00) possibly under the
additional assumption E(¢l4+1) < oc.

Barczy, Bésze, Pap (Szeged) Badajoz 2018 22/28



Stationary distribution of the 2-type representation of a

second order GWI process

Let (Xh)n>—1 be a second order GWI process such that
Q@ mecRyy, meRy, m+m,<I,
Q P(c=0) <1 and E(I..0 log(e)) < oo.
Then there exists a unique stationary distribution = for the Markov

chain ([ X, D
Xn_1 n€Z+.

Moreover, the marginals of = are the same distributions p, admitting
the representation o
- .
n2> V),
i=0
where (V;EI)(E/'))@—M i € Z4, are independent copies of (Yk(¢))k>—1,

which is a second-order GW process with initial values Yy(¢) = ¢ and
Y_1(e) = 0, and with the same offspring distributions as (Xx)x>—_1.
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Tail behavior of the stationary distribution of the 2-type

representations of second order GWI processes (BBP 2018+)
Let (Xn)nez, be a second order GWI process such that

Q m:eRyy, meR, me+my <1,

©Q ¢ isregularly varying with index « € (0, 2),

Q E(£2) < o0 and E(5?) < o incase of a € [1,2).
Then the tail of the marginals p of the unique stationary distribution =

< |: X :| ) ne
Xn_1 7

(X, 00)) ~ Zm“IPa>x as x — oo,

satisfies

and hence p is also regularly varying with index .
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Further remarks and open questions

@ The tail behavior of the stationary distribution of the 2-type
representation of a second order GWI process is the limit as
n — oo of the corresponding tail behavior of non-stationary
processes.

@ In all results for second order processes, if we assume that n = 0,
we get back formally the results for first order processes.

@ The same techniques can be used for higher order GWI
processes.

@ Joint regular variation for (general) 2-type GWI processes?
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Thank you for your attention!
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