Muller's Ratchet

In Populations Doomed to Extinction

Ricardo Azevedo, Logan Chipkin, Ryan Daileda, PO
University of Houston, Trinity University, Jönköping University

NIH National Institutes of Health
Turning Discovery Into Health

April 12, 2018

Asexually reproducing population accumulates deleterious mutations.

Asexually reproducing population accumulates deleterious mutations.

Loss of mutation-free class - first click of the ratchet.

Asexually reproducing population accumulates deleterious mutations.

Loss of mutation-free class - first click of the ratchet.

Fixed population size models, for example J. Haigh (1978), Gordo \& Charlesworth (2000)

Branching process models, for example: Fontanari, Colato, Howard (2003), S. Pénisson, P. D. Sniegowski, A. Colato and P. J. Gerrish (2013)

Fixed population size: mutation rate u, Poisson mutations, selection coefficient s, population size N, Wright-Fisher with mutations, relative fitness, k mutations - fitness $(1-s)^{k}$.

Fixed population size: mutation rate u, Poisson mutations, selection coefficient s, population size N, Wright-Fisher with mutations, relative fitness, k mutations - fitness $(1-s)^{k}$.

Haigh: Size of least-loaded class at equilibrium is $N e^{-u / s}$, ratchet clicks at times linear in N (sort of).

Simple branching process model: binary splitting, at most one new mutation per offspring, type k of individual $=$ number of mutations accumulated, $k \in\{0,1,2, \ldots\}$.

Simple branching process model: binary splitting, at most one new mutation per offspring, type k of individual $=$ number of mutations accumulated, $k \in\{0,1,2, \ldots\}$.
$(1-s)^{k}=$ fitness of type k (absolute fitness, mean number of offspring reduced by factor $\left.(1-s)^{k}\right)$

Simple branching process model: binary splitting, at most one new mutation per offspring, type k of individual $=$ number of mutations accumulated, $k \in\{0,1,2, \ldots\}$.
$(1-s)^{k}=$ fitness of type k (absolute fitness, mean number of offspring reduced by factor $\left.(1-s)^{k}\right)$

Mutation probability u

Reproduction scheme:

$$
\begin{aligned}
& k \rightarrow\left\{\begin{array}{l}
k \\
k
\end{array} \quad \text { with probability } p(1-s)^{k}(1-u)^{2}\right. \\
& k \rightarrow\left\{\begin{array}{l}
k \\
k+1
\end{array} \quad \text { with probability } 2 p(1-s)^{k} u(1-u)\right. \\
& k \rightarrow\left\{\begin{array}{l}
k+1 \\
k+1
\end{array} \quad \text { with probability } p(1-s)^{k} u^{2}\right. \\
& k \rightarrow \varnothing \quad \text { with probability } 1-p(1-s)^{k}
\end{aligned}
$$

Mean reproduction matrix M with entries

$$
\begin{cases}m_{k, k} & =2 p(1-s)^{k}(1-u) \\ m_{k, k+1} & =2 p(1-s)^{k} u\end{cases}
$$

where $m_{i, j}$ is the expected number of offspring of type j generated by an individual of type i. All other entries of M are 0.

Mean reproduction matrix M with entries

$$
\begin{cases}m_{k, k} & =2 p(1-s)^{k}(1-u) \\ m_{k, k+1} & =2 p(1-s)^{k} u\end{cases}
$$

where $m_{i, j}$ is the expected number of offspring of type j generated by an individual of type i. All other entries of M are 0.

Subcritical process: $2 p(1-u)<1$

Objective: Start with n_{0} individuals. Describe consecutive clicks of the ratchet and the corresponding sizes of the new fittest class $t_{0}, n_{1}, t_{1}, n_{2}, \ldots$

Objective: Start with n_{0} individuals. Describe consecutive clicks of the ratchet and the corresponding sizes of the new fittest class $t_{0}, n_{1}, t_{1}, n_{2}, \ldots$

Specifically: Expected extinction time of 0-class, t_{0}, and expected size of 1 -class at this time, n_{1}, particularly as $n_{0} \rightarrow \infty$.

Extinction: Think single-type. $\operatorname{Pgf} \varphi$, start from random number N_{0} of individuals. Expected extinction time:

$$
\begin{gathered}
t_{0}=E\left[T_{0}\right]=\sum_{k \geq 0} P\left(T_{0}>k\right)=\sum_{k \geq 0} P\left(Z_{k}>0\right) \\
=P\left(Z_{0}>0\right)+\sum_{k \geq 1} P\left(Z_{k}>0\right)
\end{gathered}
$$

Extinction: Think single-type. $\operatorname{Pgf} \varphi$, start from random number N_{0} of individuals. Expected extinction time:

$$
\begin{gathered}
t_{0}=E\left[T_{0}\right]=\sum_{k \geq 0} P\left(T_{0}>k\right)=\sum_{k \geq 0} P\left(Z_{k}>0\right) \\
=P\left(Z_{0}>0\right)+\sum_{k \geq 1} P\left(Z_{k}>0\right) \\
=P\left(Z_{0}>0\right)+E\left[\sum_{k \geq 1}\left(1-\left(\varphi^{(k)}(0)\right)^{N_{0}}\right)\right]
\end{gathered}
$$

Extinction: Think single-type. Pgf φ, start from random number N_{0} of individuals. Expected extinction time:

$$
\begin{gathered}
t_{0}=E\left[T_{0}\right]=\sum_{k \geq 0} P\left(T_{0}>k\right)=\sum_{k \geq 0} P\left(Z_{k}>0\right) \\
=P\left(Z_{0}>0\right)+\sum_{k \geq 1} P\left(Z_{k}>0\right) \\
=P\left(Z_{0}>0\right)+E\left[\sum_{k \geq 1}\left(1-\left(\varphi^{(k)}(0)\right)^{N_{0}}\right)\right]
\end{gathered}
$$

First-order Taylor:

$$
\begin{equation*}
t_{0} \approx P\left(Z_{0}>0\right)+\sum_{k \geq 1}\left(1-\left(\varphi^{(k)}(0)\right)^{n_{0}}\right) \tag{1}
\end{equation*}
$$

Mean reproduction matrix for nth generation M^{n} has entries

$$
m_{k, k+j}^{(n)}=a^{n-j} b^{j}(1-s)^{n k+\frac{j(j-1)}{2}} \prod_{i=1}^{j} \frac{(1-s)^{n+1-i}-1}{(1-s)^{i}-1}
$$

where $a=m(0,0)=2 p(1-u)$ and $b=m(0,1)=2 p u$.

Specifically

$$
m_{0,1}^{(n)}=(2 p(1-u))^{n} \frac{u}{1-u} \frac{1-(1-s)^{n}}{s}
$$

Specifically

$$
m_{0,1}^{(n)}=(2 p(1-u))^{n} \frac{u}{1-u} \frac{1-(1-s)^{n}}{s}
$$

so that

$$
\begin{equation*}
n_{1} \approx n_{0}(2 p(1-u))^{t_{0}} \frac{u}{1-u} \frac{1-(1-s)^{t_{0}}}{s} \tag{2}
\end{equation*}
$$

Specifically

$$
m_{0,1}^{(n)}=(2 p(1-u))^{n} \frac{u}{1-u} \frac{1-(1-s)^{n}}{s}
$$

so that

$$
\begin{equation*}
n_{1} \approx n_{0}(2 p(1-u))^{t_{0}} \frac{u}{1-u} \frac{1-(1-s)^{t_{0}}}{s} \tag{2}
\end{equation*}
$$

Can use (1) and (2) repeatedly to find $t_{0}, n_{1}, t_{1}, n_{2}, \ldots$ What happens as $n_{0} \rightarrow \infty$? Need asymptotics of $t_{0}\left(t_{0} \sim C \log n_{0}\right.$ not good enough).

Jagers, Klebaner, Sagitov (2007):

$$
t_{0}=\frac{\log n_{0}+c\left(n_{0}\right)}{-\log (2 p(1-u))}
$$

where $c\left(n_{0}\right) \rightarrow c$ as $n_{0} \rightarrow \infty$.

Jagers, Klebaner, Sagitov (2007):

$$
t_{0}=\frac{\log n_{0}+c\left(n_{0}\right)}{-\log (2 p(1-u))}
$$

where $c\left(n_{0}\right) \rightarrow c$ as $n_{0} \rightarrow \infty$. Insert into

$$
n_{1} \approx n_{0}(2 p(1-u))^{t_{0}} \frac{u}{1-u} \frac{1-(1-s)^{n_{0}}}{s}
$$

to get

Jagers, Klebaner, Sagitov (2007):

$$
t_{0}=\frac{\log n_{0}+c\left(n_{0}\right)}{-\log (2 p(1-u))}
$$

where $c\left(n_{0}\right) \rightarrow c$ as $n_{0} \rightarrow \infty$. Insert into

$$
n_{1} \approx n_{0}(2 p(1-u))^{t_{0}} \frac{u}{1-u} \frac{1-(1-s)^{n_{0}}}{s}
$$

to get

$$
n_{1} \rightarrow K \frac{u}{(1-u) s}
$$

Hence

$$
\begin{aligned}
& n_{0} \rightarrow \infty \\
& t_{0} \rightarrow \infty \\
& n_{1} \rightarrow \text { constant } \\
& t_{1}-t_{0}, n_{2}, t_{2}-t_{1}, \ldots \text { are "small" }
\end{aligned}
$$

Total extinction time dominated by extinction of mutation-free class.

Hence

$$
\begin{aligned}
& n_{0} \rightarrow \infty \\
& t_{0} \rightarrow \infty \\
& n_{1} \rightarrow \text { constant } \\
& t_{1}-t_{0}, n_{2}, t_{2}-t_{1}, \ldots \text { are "small" }
\end{aligned}
$$

Total extinction time dominated by extinction of mutation-free class.

Extinction of mutation-free class faster than fixed-population models: $t_{0} \sim C \log n_{0}$ vs. $t_{0} \sim C n_{0}$ (sort of).

A curiousity:
For small $u, 1-u \approx 1$ and

$$
n_{1} \rightarrow K \frac{u}{(1-u) s} \approx K \frac{u}{s}
$$

Appearance of u / s. Coincidence?

A curiousity:
For small $u, 1-u \approx 1$ and

$$
n_{1} \rightarrow K \frac{u}{(1-u) s} \approx K \frac{u}{s}
$$

Appearance of u / s. Coincidence?
Don't know.

