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Asexually reproducing population accumulates deleterious
mutations.

Loss of mutation-free class — first click of the ratchet.

Fixed population size models, for example J. Haigh (1978),
Gordo & Charlesworth (2000)

Branching process models, for example: Fontanari, Colato,
Howard (2003), S. Pénisson, P. D. Sniegowski, A. Colato and P.
J. Gerrish (2013)
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Fixed population size: mutation rate u, Poisson mutations,
selection coefficient s, population size N, Wright–Fisher with
mutations, relative fitness, k mutations – fitness (1− s)k.

Haigh: Size of least-loaded class at equilibrium is Ne−u/s,
ratchet clicks at times linear in N (sort of).
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Simple branching process model: binary splitting, at most one
new mutation per offspring, type k of individual = number of
mutations accumulated, k ∈ {0, 1, 2, ...}.

(1− s)k = fitness of type k (absolute fitness, mean number of
offspring reduced by factor (1− s)k)

Mutation probability u
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Reproduction scheme:

k→
{

k
k with probability p(1− s)k(1− u)2

k→
{

k
k + 1

with probability 2p(1− s)ku(1− u)

k→
{

k + 1
k + 1

with probability p(1− s)ku2

k→ ∅ with probability 1− p(1− s)k
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Mean reproduction matrix M with entries{
mk,k = 2p(1− s)k(1− u)
mk,k+1 = 2p(1− s)ku

where mi,j is the expected number of offspring of type j
generated by an individual of type i. All other entries of M are
0.

Subcritical process: 2p(1− u) < 1
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Objective: Start with n0 individuals. Describe consecutive
clicks of the ratchet and the corresponding sizes of the new
fittest class t0, n1, t1, n2, ...

Specifically: Expected extinction time of 0-class, t0, and
expected size of 1-class at this time, n1, particularly as n0 → ∞.
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Extinction: Think single-type. Pgf ϕ, start from random
number N0 of individuals. Expected extinction time:

t0 = E[T0] = ∑
k≥0

P(T0 > k) = ∑
k≥0

P(Zk > 0)

= P(Z0 > 0) + ∑
k≥1

P(Zk > 0)

= P(Z0 > 0) + E

[
∑
k≥1

(
1−

(
ϕ(k)(0)

)N0
)]

First-order Taylor:

t0 ≈ P(Z0 > 0) + ∑
k≥1

(
1−

(
ϕ(k)(0)

)n0
)

(1)
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Mean reproduction matrix for nth generation Mn has entries

m(n)
k,k+j = an−jbj(1− s)nk+

j(j−1)
2

j

∏
i=1

(1− s)n+1−i − 1
(1− s)i − 1

where a = m(0, 0) = 2p(1− u) and b = m(0, 1) = 2pu.
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Specifically

m(n)
0,1 = (2p(1− u))n u

1− u
1− (1− s)n

s

so that

n1 ≈ n0(2p(1− u))t0
u

1− u
1− (1− s)t0

s
(2)

Can use (1) and (2) repeatedly to find t0, n1, t1, n2, ... What
happens as n0 → ∞? Need asymptotics of t0 (t0 ∼ C log n0 not
good enough).
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Jagers, Klebaner, Sagitov (2007):

t0 =
log n0 + c(n0)

− log(2p(1− u))

where c(n0)→ c as n0 → ∞.

Insert into

n1 ≈ n0(2p(1− u))t0
u

1− u
1− (1− s)n0

s
to get

n1 → K
u

(1− u)s
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Hence

n0 → ∞
t0 → ∞
n1 → constant
t1 − t0, n2, t2 − t1, ... are ”small”

Total extinction time dominated by extinction of mutation-free
class.

Extinction of mutation-free class faster than fixed-population
models: t0 ∼ C log n0 vs. t0 ∼ C n0 (sort of).
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A curiousity:

For small u, 1− u ≈ 1 and

n1 → K
u

(1− u)s
≈ K

u
s

Appearance of u/s. Coincidence?

Don’t know.
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