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Fixed population size models, for example J. Haigh (1978),
Gordo & Charlesworth (2000)

Branching process models, for example: Fontanari, Colato,
Howard (2003), S. Pénisson, P. D. Sniegowski, A. Colato and P.
J. Gerrish (2013)



Fixed population size: mutation rate u, Poisson mutations,
selection coefficient s, population size N, Wright-Fisher with

mutations, relative fitness, k mutations — fitness (1 — s)k .
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Haigh: Size of least-loaded class at equilibrium is Ne =/,
ratchet clicks at times linear in N (sort of).
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Mutation probability u



Reproduction scheme:

k — { ; with probability p(1 — s)*(1 — u)?
k : - k
k — { k41 with probability 2p(1 — s)*u(1 — u)

k+1 . - k2
k — { k41 with probability p(1 —s)*u

k — @ with probability 1 — p(1 — s)*



Mean reproduction matrix M with entries

{ mee = 2p(1—s)"(1—u)
M1 = 2p(1—s)

where m; ; is the expected number of offspring of type j
generated by an individual of type i. All other entries of M are
0.



Mean reproduction matrix M with entries

{ mee = 2p(1—s)"(1—u)
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where m; ; is the expected number of offspring of type j
generated by an individual of type i. All other entries of M are
0.

Subcritical process: 2p(1 —u) < 1



Objective: Start with np individuals. Describe consecutive
clicks of the ratchet and the corresponding sizes of the new
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Objective: Start with np individuals. Describe consecutive
clicks of the ratchet and the corresponding sizes of the new
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Specifically: Expected extinction time of O-class, tp, and
expected size of 1-class at this time, 11, particularly as ny — co.



Extinction: Think single-type. Pgf ¢, start from random
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Extinction: Think single-type. Pgf ¢, start from random
number Ny of individuals. Expected extinction time:

to = E[To] = kZOP(TO > k) = kzop(zk > 0)

=P(Zy > 0)+ Y _ P(Z >0)

k>1
—P(Zy>0)+E |} <1 - ((p(k)(O))NO>]
k>1
First-order Taylor:
to~P(Zy>0)+ Y (1— (¢®(0))" 1)
o<o>k221( (¢9@)") (



Mean reproduction matrix for nth generation M" has entries
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where a = m(0,0) = 2p(1 —u) and b = m(0,1) = 2pu.
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Specifically
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Specifically

" u 1—(1-s)"
my = (2p(1— )" ——
so that
1—(1—s)b
ny ~ no(2p(1 — u))to1 ﬁ ” ( . ) ()

Can use (1) and (2) repeatedly to find tg, n1,t1, 12, ... What
happens as np — c0? Need asymptotics of fy (ty ~ Clogng not
good enough).



Jagers, Klebaner, Sagitov (2007):

o = log ng + c(no)
—log(2p(1 —u))
where ¢(ny) — cas ng — .
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Hence

ng — o0
tp — o0
n1p — constant

t1 — tg, 1, tp — t1, ... are “small”

Total extinction time dominated by extinction of mutation-free
class.



Hence

ng — o0
tp — o0
n1p — constant

t1 — tg, 1, tp — t1, ... are “small”

Total extinction time dominated by extinction of mutation-free
class.

Extinction of mutation-free class faster than fixed-population
models: ty ~ Clogng vs. tg ~ Cng (sort of).
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Don’t know.



