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Financial market model based on randomly indexed branching processes and Hawkes processes

The purpose of this talk is to present an alternative model for the
price of risky financial assets and some considerations about of
pricing of simple financial derivatives associated, based on Epps
T.W. (1996) and Mitov G. and Mitov K. (2007).
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Standard Financial Market Model:
Given (Ω,F,P), consider a financial market consisting of two assets: a
risk free asset with price process B(t), and a stock with price process S(t).

The price process B(t) has the dynamics:

dB(t) = r(t)B(t)dt

where r(t) is any adapted process. A natural interpretation of a risk
free asset is that it corresponds to a bank with the (possibly
stochastic) short rate of interest r(t).

The stock price S(t) is given by:

dS(t) = S(t)µ(t,S(t))dt+S(t)σ(t,S(t))dW(t)

where W(t) is a Wiener process, µ is the local mean rate of return
and σ as the volatility of S(t).
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The most important special case of this model occurs when r, µ
and σ are deterministic constants. This is the famous
Black-Scholes model.

dB(t) = rB(t)dt ⇒ B(t) = B(0)ert

dS(t) = µS(t)dt+σS(t)dW(t) ⇒ S(t) = S(0)e(µ−
σ2

2 )t+σW(t)
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A financial derivative with date of maturity T , is other financial
asset of the form V(t) =Φ(t,S(t)).(Ex: Call and Put options,
Futures, Forwards, Swaps,...)

¿V(t) =Φ(t,S(t))?

The main assumption we will make is that the market is efficient
in the sense that it is free of arbitrage possibilities. An arbitrage
possibility is a self-financed portfolio h(t) such that:

h(0) = 0 ; P[h(t)> 0] = 1 ; P[h(t)> 0]> 0
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(The First Fundamental Theorem) The model is arbitrage free
essentially if and only if there exists a (local) martingale measure
Q.

A probability measure Q is called an equivalent martingale measure
for the market model on the time interval [0,T ], if it has the
following properties:

Q is equivalent to P.

All price processes are martingales under Q on the time
interval [0,T ].
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For determining a reasonable price process V(t) are two main
approaches:

The derivative should be priced in a way that is consistent
with the price of the underlying assets. More precisely we
should demand that the extended market {V(t),B(t),S(t)} is
free of arbitrage possibilities.

If the derivative is attainable, with hedging portfolio Π, then
the only reasonable price is given by Π(t) = V(t).
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(General Pricing Formula) The arbitrage free price process for the
derivative V(t) is given by:

V(t) = B(t)EQ
[
V(T)

B(T)

∣∣∣∣Ft]
where Q is the (not necessarily unique) martingale measure.

Assuming the existence of a short rate, the pricing formula takes
the form:

V(t) = EQ
[
e−
∫T
t r(s)dsV(T)

∣∣∣Ft]
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In the case of the Black-Scholes model:

dB(t) = rB(t)dt

dS(t) = µS(t)dt+σS(t)dW(t)

and the Q-dynamics of S are given by:

dS(t) = rS(t)dt+σS(t)dŴ(t)

We can write S(T) explicitly as:

S(T) = S(t)exp

{(
r−

σ2

2

)
(T − t)+σ(Ŵ(T)−Ŵ(t))

}
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Thus we have the pricing formula:

V(t) = EQ
[
e−
∫T
t r(s)dsV(T)

∣∣∣Ft]= e−r(T−t) ∫∞
−∞Φ(S(t)eX)f(x)dx

where f is the density of a random variable X with the distribution

N

[(
r−

σ2

2

)
(T − t),σ

√
T − t

]
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Some drawbacks in BS

Extensive empirical evidence, documented that the logarithm
of stock return tend to be leptokurtic; that is, their
distributions have thicker tails than the normal distribution
derived from the geometric Brownian motion law.

The stock prices sometimes exhibit large jumps when some
important news is disclosed.

The stock prices were quoted in units of minimum tick
size in many markets. This discreteness of the stock
price contradicts the continuous distribution assumption
in the Black-Scholes.
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Randomly indexed branching process as a price process

At 1996 T.W. Epps introduced a randomly indexed branching
process for modeling the stock price. The model is constructed by
Bienayme-Galton-Watson branching process subordinated with a
Poisson process. has the following features:

The extra randomness introduced by the subordination
produces in the increments and in the returns the same high
proportion of outliers observed in high-frequency stock data.

The model predicts an inverse relation between variance of
returns and the initial price which is well documented
empirically.

The possibility of extinction of the stock price process have
natural interpretation as bankruptcy.
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Taking S0 > 0,

For each n, let K0n = 0 and {Kjn}j∈N to be i.i.d., nonnegative,
integer-valued random variables.

Define {Sn}
∞
n=0 as:

Sn =

Sn−1∑
j=0

Kjn

Set N0 = 0 and introduce a nondecreasing, integer-valued
process {Nt}t>0 independent of the {Kjn}, and having
stationary, independent increments.
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Taking S(0)≡ S0 and

{S(t)}t>0 := {SNt }t>0

delivers an integer-valued process that evolves in continuous time.

Here S(t) represents the price of one share of stock at time t
measured in units of minimum price movements (for example
$0.01). Equity prices are then viewed as consisting of an integer
number of price particles. In each period, each price particle of
equity price produces a random number of offspring price particles,
the aggregate number of which comprises the equity price in the
next period.
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Remarks:

In this application {Nt}t>0 can be thought of as counting the
number of information events up to t.

The price process is pure jump, since S(t) does not change
between information shocks.

S(t)−S(t−) is always an integral multiple of the minimum
tick size whenever branching does occur.

The model also implies a positive probability of extinction
(S(t) = 0).
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Letting pk = P[K= k] for k= 0,1,2, ... represent the
probability mass function of K and fK(t) =

∑∞
k=0 t

kpk S(t)

the p.g.f., we have for the generating function of Sn (the price
after n shocks) conditional on Sn−1:

fSn(t|Sn−1) = E[t
Sn |Sn−1] = E[t

∑Sn−1
j=0 Kjn |Sn−1] = (fK(t))

Sn−1

The generating function of S(t)≡ SNt is then

fS(t)(t) =

∞∑
n=0

(
f
[n]
K (t)

)S0
P[Nt = n]
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Let us consider a Bienayme-Galton-Watson branching process,
{Sn}

∞
n=0 with a non-random number of ancestors S0 > 0 and

the offspring probability distribution is :

P[Sn+1 = 0|Sn = 1] =1−a

P[Sn+1 = k|Sn = 1] =ap(1−p)k−1 , k= 1,2, ...

where 0< a < 1 y 0< p < 1.(The two-parameter geometric
distribution).
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The probability generating function :

fK(t) = 1−
m(1− t)

1+ b
2m(1− t)

, t ∈ [0,1]

where m= a/p. Then,

f
[n]
K (t) = 1−

mn(1− t)

1+ b
2m

1−mn

1−m (1− t)

The mean and variance are:

µ= 2
1−p

p
m ; σ2 =

a

p

(
(1−p)+(1−a)

p

)



Financial market model based on randomly indexed branching processes and Hawkes processes

Differentiating:

d(p)(f
[n]
K (t))

dtp
=

p!mn
[
b(1−m)n

2m(1−m)

]p−1

[
1+ b(1−mn)

2m(1−m)(1− t)
]p+1

and follows that,

P[Sn = k|S0 = 1] =
mn

[
b(1−m)n

2m(1−m)

]p−1

[
1+ b(1−mn)

2m(1−m)

]p+1
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Consider an independent of {Sn}, Poisson process {Nt}t>0

with constant intensity λ > 0. Define the randomly indexed
branching process {S(t)}t>0 = {SNt }.

Starting with S(0)> 1 ancestors, the p.g.f. of the process S(t)
is:

Φ(u,t) =
∞∑
n=0

(λu)n

n!
e−λu(f

[n]
K (t))S(0)

=

∞∑
n=0

(λu)n

n!
e−λu

(
1−

mn(1− t)

1+ b
2m

1−mn

1−m (1− t)

)S(0)
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The formulas for the mean and the variance of the process
S(t) are:

M(t) = E[S(t)|S(0)] =

{
S(0)eλt(m−1) si m 6= 1

S(0) si m= 1

σ2(t)=Var[S(t)|S(0)] =


S(0)2[eλt(m

2−1)−e2λt(m−1)]+

S(0)σ2[eλt(m
2−1)−eλt(m−1)]

m(m−1) si m 6= 1

S(0)σ2λt si m= 1
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Under the conditions assumed above:

1 The process S(t)m−Nt ;t> 0 is a nonnegative martingale.

2 The process S(t)e−λt(m−1);t> 0 is a nonnegative martingale.

3 It follows that the discounted stock price process S(t)e−rt,
has mean

E[S(t)e−rt|S(0)] = e[−λ(m−1)−r]tS(0)
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We can state that discounted stock price process S(t)e−rt will be a
martingale if the parameters of the distribution of S(t) are such
that:

λ(m−1) = r⇔ λ
a−p

p
= r⇔ a= p(1+ r/λ)

Utilizing this relation we define EMM Q as follows:

Q to be equal to the real measure P on the elementary sets of
the Poisson process Nt.
We define Q on the elementary sets of the branching process
by:

Q[Sn+1 = 0|Sn = 1] =1− â

Q[Sn+1 = k|Sn = 1] =âp(1−p)k−1 , k= 1,2, ...

where â satisfies the initial condition.



Financial market model based on randomly indexed branching processes and Hawkes processes

Call options pricing

C(T ;0) = e−rTEQ[(S(T)−K)+|S(0)]

= e−r(T−t)

[ ∞∑
k=K+1

kQ[S(T) = k|S(0)]−KQ[S(T)> K|S(0)]

]
= e−r(T−t)

[
EQ[S(T)|S(0)]−K

]
+e−r(T−t)

[
KQ[S(T)6 K|S(0)]−

K∑
k=1

kQ[S(T) = k|S(0)]

]
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Using the relation:

Q[S(T) = k|S(0)] =
∞∑
n=0

(λT)n

n!
e−λTQ[Sn = k|S0]

and the fact that S(t)e−λt(m−1) is a nonnegative martingale

C(T ;0) = S(0)−e−rTK+e−(r+λ)T
∞∑
n=0

(λT)n

n!

K∑
k=0

(K−k)Q(Sn = k|S0)
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Hawkes process

The research proposal consider that the process Nt in the
randomly indexed branching processes model for price, is defined
considering that the processes {Nt}t>0 that satisfies

P[N(t+h)−N(t) =m|Ft] =


λ(t)h+o(h) m= 1

o(h) m> 1

1−λ(t)h+o(h) m= 0

with conditinal intensity function

λ(t) = α+

∫t
0
µ(t−u)dN(u)

for some α > 0 (background intensity) and µ : (0,∞)→ [0,∞)

(excitation function).
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