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1. Branching process with immigration

Let N = {0, 1, 2, . . .}. Let {ξn,i} be a class of N-valued i.i.d. random variables.
Given X0 = k ∈ N, we can define a Galton–Watson process {Xn} by

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1. (1)

Let {ηn} be a class of N-valued i.i.d. random variables independent of {ξn,i}. Given
Y0 = k ∈ N, we can define a Galton–Watson process with immigration {Yn} by

Yn =

Yn−1∑
i=1

ξn,i + ηn, n ≥ 1. (2)

The above formulations do not work in the continuous-time situation.

• Let p(j) = P(ξ1,1 = j). Then {Xn} is a Markov chain with one-step transition matrix
Q(i, j) = p ∗ · · · ∗ p(j) (i-fold convolution). The following branching property holds:

Q(i1 + i2, ·) = Q(i1, ·) ∗Q(i2, ·), i1, i2 ∈ N. (3)

• Let γ(j) = P(η1 = j). Then {Yn} is a Markov chain with one-step transition matrix:

P (i, ·) := Q(i, ·) ∗ γ(·), i ∈ N. (4)
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A continuous-time Markov process with state space [0,∞) is called a continuous-
state branching process if its transition probability Qt(x, dy) satisfies:

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), x1, x2, t ≥ 0. (5)

This is the (continuous-time) branching property, which yields the following structures:∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), x, t, λ ≥ 0, (6)

where t 7→ vt(λ) is the positive solution to

d

dt
vt(λ) = −φ(vt(λ)), vt(λ) = λ. (7)

• The function φ is the branching mechanism give by

φ(z) = bz + cz2 +

∫
(0,∞)

(
e−zu − 1 + zu

)
m(du), (8)

where c ≥ 0 and b are constants and (u∧ u2)m(du) is a finite measure on (0,∞).

References: Feller (’51), Lamperti (’67), Silverstein (’68), etc.
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Books discussing CB- and CBI-processes

Athreya–Ney (Springer ’72) – Section VI.2
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Kyprianou (Springer ’06/’14) – Chapter 12
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Li (Springer ’11) – Chapter 3 and Section 9.5
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Pardoux (Springer ’16) – Chapter 4
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A Markov process with state space [0,∞) is called a continuous-state branching
process with immigration if its transition probability Pt(x, dy) has the decomposition:

Pt(x, ·) = Qt(x, ·) ∗ γt(·), x, t ≥ 0. (9)

where (γt)t≥0 is a family of probability distributions on [0,∞).

Proposition 0 (L ’11) The kernels (Pt)t≥0 form a semigroup if and only if

γr+t = (γrQt) ∗ γt, r, t ≥ 0, (10)

where

(γrQt)(·) =

∫
[0,∞)

γr(dx)Qt(x, ·). (11)

• The skew-convolution property (10) yields the following structure:∫
[0,∞)

e−λyγt(dy) = exp
{
−
∫ t

0

ψ(vs(λ))ds
}
. (12)

• The function ψ is the immigration mechanism given by

ψ(z) = βz +

∫
(0,∞)

(
1− e−zu

)
ν(du), (13)

where β ≥ 0 and (1 ∧ u)ν(du) is a finite measure on (0,∞).
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The CBI-process is also known as “CIR-model” in mathematical finance;
e.g, Bernis–Scotti (’18+)., Jiao et al. (’17).
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Structures of a biological population:

natives + immigrants
(immigrants reproduce in the same way as the natives)

Types of immigration:

individual immigrants + group immigrants
(continuous immigration + discontinuous immigration)

(14)

Problem Construction of immigration models reflecting those structures.
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2. Generators of three population models

The generators of the CB- and the CBI-processes are known by the results of Lam-
perti (’67) and Kawazu–Watanabe (’71); see also Aliev (’85), Aliev–Shchurenkov (’82),
Grey (’74), Grimvall (’74).

• A continuous-state branching process (CB-process) without immigration has gen-
erator L0 defined by (determined by the branching mechanism φ):

L0f(x) = x
[
cf ′′(x)− bf ′(x) +

∫
(0,∞)

(
f(x+ z)− f(x)− zf ′(x)

)
m(dz)

]
, (15)

where the part in [...] is the generator of a spectrally positive Lévy process. (Linear!)

• The continuous-state branching process with immigration (CBI-process) has gen-
erator L1 defined by (determined by the branching mechanism φ and the immigration
mechanism ψ):

L1f(x) = L0f
′′(x) +

[
βf ′(x) +

∫
(0,∞)

(
f(x+ z)− f(x)

)
ν(dz)

]
, (16)

where the part in [...] is the generator of an increasing Lévy process. (Affine!)
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• By a continuous-state branching process with dependent immigration (CBDI-process)
we mean a continuous-times Markov process with generator L defined by

Lf(x) = L0f
′′(x) + h(x)f ′(x) +

∫
(0,∞)

(
f(x+ z)− f(x)

)
q(x, z)ν(dz), (17)

where (h, q) are positive functions representing the dependent immigration rates.

We assume the following conditions:

• (linear growth condition) there is a constant K ≥ 0 so that

h(x) +

∫ ∞
0

q(x, z)zν(dz) ≤ K(1 + x), x ≥ 0;

• (Yamada-Watanabe condition) there is an increasing and concave function u 7→
r(u) on [0,∞) so that

∫
0+ r(u)

−1du =∞ and, for x, y ≥ 0,

|h(x)− h(y)|+
∫ ∞
0
|q(x, z)− q(y, z)|zν(dz) ≤ r(|x− y|).

This talk: A construction of the CBDI-process.
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3. Construction of the CBDI-process

Recall that a CB-process (without immigration) has transition semigroup (Qt)t≥0

characterized by∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), t, λ, x ≥ 0, (18)

where t 7→ vt(λ) is the unique positive solution of

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ. (19)

The function φ is the branching mechanism given by

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(e−λz − 1 + λz)m(dz). (20)

Observations: (i) (Qt)t≥0 is a Feller semigroup; (ii) zero is a trap for the CB-process;
(iii) Qt(x, ·) is infinitely divisible distribution.

• The CB-process can be realized in W := {positive càdlàg paths (w(t))t≥0}.

• By restricting (Qt)t≥0 on (0,∞), we obtain a sub-Markov semigroup (Q◦t )t≥0.
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Since Qt(x, ·) is infinite divisible, we have the canonical representation:

vt(λ) = htλ+

∫
(0,∞)

(1− e−λz)lt(dz), (21)

where ht ≥ 0 and zlt(dz) is a finite measure on (0,∞).

• The family (lt)t>0 is an entrance rule for (Q◦t )t≥0 in the sense that, for any t > 0,

lrQ
◦
t−r :=

∫
(0,∞)

lr(dx)Q
◦
t−r(x, ·) ↑ lt as r ↑ t. (22)

•We construct (directly) the Kuznetsov measure N0 onW so that (Markov property):

N0(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn)

= lt1(dx1)Q
◦
t2−t1(x1, dx2) · · ·Q◦tn−tn−1

(xn−1, dxn). (23)

• In the special case of ht ≡ 0 (t > 0), it is the excursion law N0 := limz↓0 z
−1Qz,

where Qz is the distribution on W of the CB-process (x(t))t≥0 with x(0) = z.
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Recall that Qz is the distribution on W of the CB-process (x(t))t≥0 with x(0) = z

and N0 is the canonical Kuznetsov measure defined by (23).

Suppose we have the following independent elements:

• Xt = CB-process with generator L0 given by (15);

• N0(ds, du, dw) = Poisson r.m. on (0,∞)2 ×W with intensity dsduN0(dw);

• N1(ds, dz, du,dw) = Poisson r.m. on (0,∞)3×W with intensity dsν(dz)duQz(dw).

We consider the stochastic integral equation (L ’11/’18+, L–Zhang ’18+):

Yt = Xt +

∫ t

0
h(Ys)ht−sds+

∫ t

0

∫ h(Ys−)

0

∫
W
w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ q(Ys−,z)

0

∫
W
w(t− s)N1(ds, dz, du, dw). (24)

Theorem 2 There is a pathwise unique positive càdlàg solution {Yt : t ≥ 0} to (29)
and the solution is a Markov process with generator L defined by (17).

...... see (14) and (17).
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Recall that a CBDI-process has generatorL given by (L0 = generator of CB-process):

Lf(x) = L0f
′′(x) + h(x)f ′(x) +

∫
(0,∞)

(
f(x+ z)− f(x)

)
q(x, z)ν(dz). (25)

Example 1 When h(x) ≡ β and q(x, z) ≡ 1 are constants, the operator L defined
by (25) generates a classical CBI-process.

Example 2 When h(x) ≡ βx and q(x, z) ≡ x, the operator L defined by (25)
generates a CB-process with new branching mechanism

λ 7→ φ(λ)−βλ−
∫ ∞
0

(1− e−λz)ν(dz).

Example 3 Suppose that x 7→ G(x) be a “good” positive function on [0,∞). By
setting h(x) = βx−G(x) and q(x, z) ≡ 0 we get (CB-process with competition):

Lf(x) = L0f(x)+βxf ′(x)−G(x)f ′(x).

See Berestycki et al. (’17+), Lambert (’05), Pardoux (’16).
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4. Distributions of large jumps

Using the stochastic equations, we can calculate some useful probabilities explicitly.

Theorem 3 (He–L ’15) Let {y(t)} be a CB-process with y(0) = x. Then, for any
r, t > 0,

P(s 7→ y(s) has no jump larger than r by time t) = exp{−xur(t)}, (26)

where t 7→ ur(t) is the unique solution of

∂

∂t
ur(t) = m(r,∞)− φr(ur(t)), ur(0) = 0, (27)

where

φr(λ) =
[
b+

∫
(r,∞)

zm(dz)
]
λ+ cλ2 +

∫
(0,r]

(e−λz − 1 + λz)m(dz).

Corollary 4 For r > 0 satisfying m(r,∞) > 0, we have

P(s 7→ y(s) has no jump larger than r forever) = exp{−xφ−1
r (m(r,∞))}. (28)

Remark We have not seen the counterparts of (26) and (28) in the discrete-time/state
setting.
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Observations for large jumps

Let {xr(t)} be a CB-process with branching mechanism φr and Nr(ds, dz, du, dw) a
Poisson random measure with intensity 1{z>r}dsm(dz)duQz(dw) independent of {xr(t)}.
Then the solution {y(t)} of

y(t) = xr(t) +

∫ t

0

∫ ∞
r

∫ y(s−)

0

∫
W

w(t− s)Nr(ds, dz, du,dw) (29)

is a CB-process with branching mechanism φ. Observe that{
s 7→ y(s) has no jump larger than r by time t

}
=

{∫ t

0

∫ ∞
r

∫ y(s−)

0

∫
W

w(t− s)Nr(ds, dz, du, dw) = 0

}
=

{∫ t

0

∫ ∞
r

∫ y(s−)

0

∫
W

Nr(ds, dz, du, dw) = 0

}
⋂{

y(s) = xr(s) for s ∈ [0, t]
}

=

{∫ t

0

∫ ∞
r

∫ xr(s−)

0

∫
W

Nr(ds, dz, du, dw) = 0

}
⋂{

y(s) = xr(s) for s ∈ [0, t]
}

=

{∫ t

0

∫ ∞
r

∫ xr(s−)

0

∫
W

Nr(ds, dz, du, dw) = 0

}
.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Proof of existence of the solution

For simplicity, assume q(x, z) ≡ 0. Let Y0(t) = Xt and define inductively

Yk(t) = Xt +

∫ t

0

h(Yk−1(s))ht−sds+

∫ t

0

∫ h(Yk−1(s−))

0

∫
W

w(t− s)N0(ds, du, dw).

Then
( ∫ b
a
= −

∫ a
b

)
Yj(t)− Yk(t) =

∫ t

0

[
h(Yj−1(s))− h(Yk−1(s))

]
ht−sds ↙

+

∫ t

0

∫ h(Yj−1(s−))

h(Yk−1(s−))

∫
W

w(t− s)N0(ds, du, dw)

Observe that |Yj(t)− Yk(t)| ≤ Zj,k(t), where

Zj,k(t) =

∫ t

0

∣∣∣h(Yj−1(s))− h(Yk−1(s))
∣∣∣ht−sds

+

∫ t

0

∫ h(Yj−1(s−))∨h(Yk−1(s−))

h(Yj−1(s−))∧h(Yk−1(s−))

∫
W

w(t− s)N0(ds, du, dw)

By a moment formula of stochastic integrals,

E[Zj,k(t)] = E
[ ∫ t

0

∣∣∣h(Yj−1(s))− h(Yk−1(s))
∣∣∣(ht−s + ∫

W

w(t− s)N0(dw)
)
ds

]
.
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It follows that

E[Zj,k(t)] = E
[ ∫ t

0

∣∣∣h(Yj−1(s))− h(Yk−1(s))
∣∣∣e−b(t−s)ds]

≤ e|b|tE
[ ∫ t

0

r(|Yj−1(s)− Yk−1(s)|)ds
]

(Yamada–Watanabe cond.)

≤ e|b|tE
[ ∫ t

0

r(Zj−1,k−1(s))ds
]
≤ e|b|t

∫ t

0

r(E[Zj−1,k−1(s)])ds.

Let Rn(t) = supj,k≥n E[Zj,k(t)] and R(t) = limn→∞Rn(t). Then

Rn(t) ≤ e|b|t
∫ t

0

r(Rn−1(s))ds⇒ R(t) ≤ e|b|t
∫ t

0

r(R(s))ds⇒ R(t) = 0,

and so

lim
j,k→∞

E[|Yj(t)− Yk(t)|] ≤ lim
j,k→∞

E[Zj,k(t)] = 0.

With some additional work, we show

lim
j,k→∞

E
[

sup
0≤s≤t

|Yj(s)− Yk(s)|
]
= 0.

Then {Yk(t) : t ≥ 0}, k = 1, 2, · · · is a Cauchy sequence. �
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