[The 4th Workshop on Branching Processes and their Applications, April 10-13, 2018, University of Extremadura, Badajoz, Spain]

# Continuous-state branching processes with dependent immigration 

Zenghu Li

Beijing Normal University

Based on L ('18+) and L-Zhang ('18+).

## 1. Branching process with immigration

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $\left\{\xi_{n, i}\right\}$ be a class of $\mathbb{N}$-valued i.i.d. random variables. Given $\boldsymbol{X}_{\mathbf{0}}=\boldsymbol{k} \in \mathbb{N}$, we can define a Galton-Watson process $\left\{\boldsymbol{X}_{n}\right\}$ by

$$
\begin{equation*}
X_{n}=\sum_{i=1}^{X_{n-1}} \xi_{n, i}, \quad n \geq 1 \tag{1}
\end{equation*}
$$

Let $\left\{\eta_{n}\right\}$ be a class of $\mathbb{N}$-valued i.i.d. random variables independent of $\left\{\xi_{n, i}\right\}$. Given $\boldsymbol{Y}_{\mathbf{0}}=\boldsymbol{k} \in \mathbb{N}$, we can define a Galton-Watson process with immigration $\left\{\boldsymbol{Y}_{n}\right\}$ by

$$
\begin{equation*}
Y_{n}=\sum_{i=1}^{Y_{n-1}} \xi_{n, i}+\eta_{n}, \quad n \geq 1 \tag{2}
\end{equation*}
$$

The above formulations do not work in the continuous-time situation.

- Let $p(j)=P\left(\xi_{1,1}=j\right)$. Then $\left\{X_{n}\right\}$ is a Markov chain with one-step transition matrix $Q(i, j)=p * \cdots * p(j)(i$-fold convolution). The following branching property holds:

$$
\begin{equation*}
Q\left(i_{1}+i_{2}, \cdot\right)=Q\left(i_{1}, \cdot\right) * Q\left(i_{2}, \cdot\right), \quad i_{1}, i_{2} \in \mathbb{N} \tag{3}
\end{equation*}
$$

- Let $\gamma(j)=\boldsymbol{P}\left(\eta_{1}=j\right)$. Then $\left\{\boldsymbol{Y}_{n}\right\}$ is a Markov chain with one-step transition matrix:

$$
\begin{equation*}
P(i, \cdot):=Q(i, \cdot) * \gamma(\cdot), \quad i \in \mathbb{N} \tag{4}
\end{equation*}
$$

A continuous-time Markov process with state space $[0, \infty)$ is called a continuousstate branching process if its transition probability $Q_{t}(x, d y)$ satisfies:

$$
\begin{equation*}
Q_{t}\left(x_{1}+x_{2}, \cdot\right)=Q_{t}\left(x_{1}, \cdot\right) * Q_{t}\left(x_{2}, \cdot\right), \quad x_{1}, x_{2}, t \geq 0 . \tag{5}
\end{equation*}
$$

This is the (continuous-time) branching property, which yields the following structures:

$$
\begin{equation*}
\int_{[0, \infty)} e^{-\lambda y} Q_{t}(x, d y)=e^{-x v_{t}(\lambda)}, \quad x, t, \lambda \geq 0 \tag{6}
\end{equation*}
$$

where $t \mapsto v_{t}(\lambda)$ is the positive solution to

$$
\begin{equation*}
\frac{d}{d t} v_{t}(\lambda)=-\phi\left(v_{t}(\lambda)\right), \quad v_{t}(\lambda)=\lambda \tag{7}
\end{equation*}
$$

- The function $\phi$ is the branching mechanism give by

$$
\begin{equation*}
\phi(z)=b z+c z^{2}+\int_{(0, \infty)}\left(\mathrm{e}^{-z u}-1+z u\right) m(\mathrm{~d} u) \tag{8}
\end{equation*}
$$

where $c \geq 0$ and $b$ are constants and $\left(u \wedge u^{2}\right) m(d u)$ is a finite measure on $(0, \infty)$.
References: Feller ('51), Lamperti ('67), Silverstein ('68), etc.

## Books discussing CB- and CBI-processes



## Chapter V. Multi-Type Branching Processes

1. Introduction and Definitions . ..... 181
2. Moments and the Frobenius Theorem ..... 184
3. Extinction Probability and Transience ..... 186
4. Limit Theorems for the Subcritical Case ..... 186
5. Limit Theorems for the Critical Case ..... 189
6. The Supercritical Case and Geometric Growth ..... 192
7. The Continuous Time, Multitype Markov Case ..... 199
8. Linear Functionals of Supercritical Processes . ..... 209
9. Embedding of Urn Schemes into Continuous Time Markov Branching Processes ..... 219
10. The Multitype Age-Dependent Process ..... 225
Complements and Problems V ..... 227
Chapter VI. Special Processes
11. A One Dimensional Branching Random Walk ..... 230
12. Cascades; Distributions of Generations ..... 239
13. Branching Diffusions ..... 242
14. Martingale Methods ..... 246
15. Branching Processes with Random Environments ..... 249
16. Continuous State Branching Processes . ..... 257
17. Immigration ..... 262
18. Instability ..... 266
Complements and Problems VI ..... 267
Bibliography ..... 268
List of Symbols ..... 282
Author Index ..... 283
Subject Index ..... 285

## Andreas E. Kyprianou

## Fluctuations of Lévy Processes with Applications

Introductory Lectures
Second Edition
10 Ruin Problems and Gerber-Shiu Theory ..... 277
10.1 Review of Distributional Properties at Ruin ..... 278
10.2 The Gerber-Shiu Measure ..... 280
10.3 Reflection Strategies ..... 283
10.4 Refraction Strategies ..... 287
10.5 Perturbed Processes and Tax ..... 300
Exercises ..... 305
11 Applications to Optimal Stopping Problems ..... 309
11.1 Sufficient Conditions for Optimality ..... 309
11.2 The McKean Optimal Stopping Problem ..... 311
11.3 Smooth Fit versus Continuous Fit ..... 316
11.4 The Novikov-Shiryaev Optimal Stopping Problem ..... 320
11.5 The Shepp-Shiryaev Optimal Stopping Problem ..... 326
Exercises ..... 334
12 Continuous-State Branching Processes ..... 337
12.1 The Lamperti Transform ..... 337
12.2 Long-term Behaviour ..... 340
12.3 Conditioned Processes and Immigration ..... 347
12.4 Concluding Remarks ..... 358
Exercises ..... 359
13 Positive Self-Similar Markov Processes ..... 365
13.1 Definition and Examples ..... 366
13.2 Conditioned Processes and Self-similarity ..... 370
13.3 The Second Lamperti Transform ..... 375
13.4 Lamperti-stable Processes ..... 383
13.5 Self-Similar Continuous-state Branching Processes ..... 393
13.6 Entrance Laws and Recurrent Extensions ..... 395
13.7 Spectrally Negative Processes ..... 400
Exercises ..... 410
Preface ..... v
1 Random Measures on Metric Spaces
1 Random Measures on Metric Spaces ..... 1 ..... 1
1.1 Borel Measures
1.1 Borel Measures ..... 1 ..... 1
1.2 Laplace Functionals ..... 8
1.3 Poisson Random Measures ..... 13
1.4 Infinitely Divisible Random Measures ..... 15
1.5 Lévy-Khintchine Type Representations ..... 21
1.6 Notes and Comments ..... 26
2 Measure-Valued Branching Processes ..... 29
2.1 Definitions and Basic Properties ..... 29
2.2 Integral Evolution Equations ..... 33
2.3 Dawson-Watanabe Superprocesses ..... 38
2.4 Examples of Superprocesses ..... 44

2.5 Some Moment Formulas

2.5 Some Moment Formulas .....  ..... 47 .....  ..... 47
2.6 Notes and Comments
2.6 Notes and Comments ..... 54 ..... 54 ..... 4 ..... 4
3 One-Dimensional Branching Processes ..... 57
3.1 Continuous-State Branching Processes ..... 57
3.2 Long-Time Evolution Rates ..... 63
3.3 Immigration and Conditioned Processes ..... 66
3.4 More Conditional Limit Theorems ..... 70
3.5 Scaling Limits of Discrete Processes ..... 75
3.6 Notes and Comments ..... 83
4 Branching Particle Systems ..... 87
4.1 Particle Systems with Local Branching ..... 87
4.2 Scaling Limits of Local Branching Systems. ..... 92
4.3 General Branching Particle Systems ..... 97
4.4 Scaling Limits of General Branching Systems .... ..... 100156左
Li (Springer '11) - Chapter 3 and Section 9.5

## Étienne Pardoux

## Probabilistic Models of Population Evolution

Scaling Limits, Genealogies and Interactions

Q Springer
1 Introduction ..... 1
2 Branching Processes ..... 5
2.1 Discrete Time Bienaymé-Galton-Watson Processes ..... 5
2.2 Continuous Time Markov Branching Process ..... 9
2.2.1 The General Case ..... 9
2.2.2 The Binary Branching Case ..... 11
3 Convergence to a Continuous State Branching Process ..... 13
3.1 Convergence of Discrete Time Branching Processes ..... 13
3.2 The Individuals with an Infinite Line of Descent. ..... 18
3.3 Convergence of Continuous Time Branching Processes ..... 18
3.4 Convergence of Continuous Time Binary Branching Processes ..... 20
3.5 Convergence to an ODE ..... 21
4 Continuous State Branching Process (CSBP) ..... 23
4.1 Space-Time White Noise, Dawson-Li SDE, and the Branching Property ..... 24
4.2 Laplace Functional of a CSBP ..... 27
4.3 The Individuals Whose Progeny Survives During $t N$ Generations ..... 31
4.4 Consequence for the CSBP ..... 33
4.5 The Prolific Individuals ..... 34
4.6 A More General Dawson-Li SDE ..... 38
5 Genealogies ..... 45
5.1 Preliminaries ..... 46
5.2 Correspondence of Laws ..... 49
Pardoux (Springer '16) - Chapter 4

A Markov process with state space $[0, \infty)$ is called a continuous-state branching process with immigration if its transition probability $\boldsymbol{P}_{t}(x, d y)$ has the decomposition:

$$
\begin{equation*}
P_{t}(x, \cdot)=Q_{t}(x, \cdot) * \gamma_{t}(\cdot), \quad x, t \geq 0 . \tag{9}
\end{equation*}
$$

where $\left(\gamma_{t}\right)_{t \geq 0}$ is a family of probability distributions on $[0, \infty)$.
Proposition 0 (L'11) The kernels $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 0}$ form a semigroup if and only if

$$
\begin{equation*}
\gamma_{r+t}=\left(\gamma_{r} Q_{t}\right) * \gamma_{t}, \quad r, t \geq 0 \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\gamma_{r} Q_{t}\right)(\cdot)=\int_{[0, \infty)} \gamma_{r}(d x) Q_{t}(x, \cdot) . \tag{11}
\end{equation*}
$$

- The skew-convolution property (10) yields the following structure:

$$
\begin{equation*}
\int_{[0, \infty)} e^{-\lambda y} \gamma_{t}(d y)=\exp \left\{-\int_{0}^{t} \psi\left(v_{s}(\lambda)\right) d s\right\} \tag{12}
\end{equation*}
$$

- The function $\psi$ is the immigration mechanism given by

$$
\begin{equation*}
\psi(z)=\beta z+\int_{(0, \infty)}\left(1-\mathrm{e}^{-z u}\right) \nu(\mathrm{d} u) \tag{13}
\end{equation*}
$$

where $\beta \geq 0$ and $(1 \wedge u) \nu(\mathrm{d} u)$ is a finite measure on $(0, \infty)$.

The CBI-process is also known as "CIR-model" in mathematical finance; e.g, Bernis-Scotti ('18+)., Jiao et al. ('17).

# Alpha-CIR model with branching processes in sovereign interest rate modeling 

Ying Jiao ${ }^{\mathbf{1 , 2}}$ • Chunhua Ma ${ }^{\mathbf{3}} \cdot \mathbf{S i m o n e}$ Scotti


#### Abstract

We introduce a class of interest rate models, called the $\alpha$-CIR model, which is a natural extension of the standard CIR model by adding a jump part driven by $\alpha$-stable Lévy processes with index $\alpha \in(1,2]$. We deduce an explicit expression for the bond price by using the fact that the model belongs to the family of CBI and affine processes, and analyze the bond price and bond yield behaviors. The $\alpha$-CIR model allows us to describe in a unified and parsimonious way several recent observations on the sovereign bond market such as the persistency of low interest rates together with the presence of large jumps. Finally, we provide a thorough analysis of the jumps, and in particular the large jumps.


## Structures of a biological population:

$$
\text { natives }+ \text { immigrants }
$$

(immigrants reproduce in the same way as the natives)

## Types of immigration:

> individual immigrants + group immigrants (continuous immigration + discontinuous immigration)


Problem Construction of immigration models reflecting those structures.

## 2. Generators of three population models

The generators of the CB- and the CBI-processes are known by the results of Lamperti ('67) and Kawazu-Watanabe ('71); see also Aliev ('85), Aliev-Shchurenkov ('82), Grey ('74), Grimvall ('74).

- A continuous-state branching process (CB-process) without immigration has generator $L_{0}$ defined by (determined by the branching mechanism $\phi$ ):

$$
\begin{equation*}
L_{0} f(x)=x\left[c f^{\prime \prime}(x)-b f^{\prime}(x)+\int_{(0, \infty)}\left(f(x+z)-f(x)-z f^{\prime}(x)\right) m(\mathrm{~d} z)\right] \tag{15}
\end{equation*}
$$

where the part in [...] is the generator of a spectrally positive Lévy process. (Linear!)

- The continuous-state branching process with immigration (CBI-process) has generator $L_{1}$ defined by (determined by the branching mechanism $\phi$ and the immigration mechanism $\psi$ ):

$$
\begin{equation*}
L_{1} f(x)=L_{0} f^{\prime \prime}(x)+\left[\beta f^{\prime}(x)+\int_{(0, \infty)}(f(x+z)-f(x)) \nu(\mathrm{d} z)\right], \tag{16}
\end{equation*}
$$

where the part in $[. .$.$] is the generator of an increasing Lévy process. (Affine!)$

- By a continuous-state branching process with dependent immigration (CBDI-process) we mean a continuous-times Markov process with generator $L$ defined by

$$
\begin{equation*}
L f(x)=L_{0} f^{\prime \prime}(x)+h(x) f^{\prime}(x)+\int_{(0, \infty)}(f(x+z)-f(x)) q(x, z) \nu(\mathrm{d} z) \tag{17}
\end{equation*}
$$

where $(h, q)$ are positive functions representing the dependent immigration rates.
We assume the following conditions:

- (linear growth condition) there is a constant $\boldsymbol{K} \geq \mathbf{0}$ so that

$$
h(x)+\int_{0}^{\infty} q(x, z) z \nu(\mathrm{~d} z) \leq K(1+x), \quad x \geq 0 ;
$$

- (Yamada-Watanabe condition) there is an increasing and concave function $\boldsymbol{u} \mapsto$ $r(u)$ on $[0, \infty)$ so that $\int_{0+} r(u)^{-1} \mathrm{~d} u=\infty$ and, for $x, y \geq 0$,

$$
|h(x)-h(y)|+\int_{0}^{\infty}|q(x, z)-q(y, z)| z \nu(\mathrm{~d} z) \leq r(|x-y|) .
$$

This talk: A construction of the CBDI-process.

## 3. Construction of the CBDI-process

Recall that a CB-process (without immigration) has transition semigroup $\left(Q_{t}\right)_{t \geq 0}$ characterized by

$$
\begin{equation*}
\int_{[0, \infty)} \mathrm{e}^{-\lambda y} Q_{t}(x, \mathrm{~d} y)=\mathrm{e}^{-x v_{t}(\lambda)}, \quad t, \lambda, x \geq 0 \tag{18}
\end{equation*}
$$

where $t \mapsto v_{t}(\lambda)$ is the unique positive solution of

$$
\begin{equation*}
\frac{\partial}{\partial t} v_{t}(\lambda)=-\phi\left(v_{t}(\lambda)\right), \quad v_{0}(\lambda)=\lambda \tag{19}
\end{equation*}
$$

The function $\phi$ is the branching mechanism given by

$$
\begin{equation*}
\phi(\lambda)=b \lambda+c \lambda^{2}+\int_{(0, \infty)}\left(\mathrm{e}^{-\lambda z}-1+\lambda z\right) m(\mathrm{~d} z) \tag{20}
\end{equation*}
$$

Observations: (i) $\left(Q_{t}\right)_{t \geq 0}$ is a Feller semigroup; (ii) zero is a trap for the CB-process; (iii) $Q_{t}(x, \cdot)$ is infinitely divisible distribution.

- The CB-process can be realized in $W:=\left\{\right.$ positive càdlàg paths $\left.(\boldsymbol{w}(t))_{t \geq 0}\right\}$.
- By restricting $\left(Q_{t}\right)_{t \geq 0}$ on $(0, \infty)$, we obtain a sub-Markov semigroup $\left(Q_{t}^{\circ}\right)_{t \geq 0}$.

Since $Q_{t}(x, \cdot)$ is infinite divisible, we have the canonical representation:

$$
\begin{equation*}
v_{t}(\lambda)=h_{t} \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda z}\right) l_{t}(\mathrm{~d} z) \tag{21}
\end{equation*}
$$

where $h_{t} \geq 0$ and $z l_{t}(\mathrm{~d} z)$ is a finite measure on $(0, \infty)$.

- The family $\left(l_{t}\right)_{t>0}$ is an entrance rule for $\left(Q_{t}^{\circ}\right)_{t \geq 0}$ in the sense that, for any $t>0$,

$$
\begin{equation*}
l_{r} Q_{t-r}^{\circ}:=\int_{(0, \infty)} l_{r}(\mathrm{~d} x) Q_{t-r}^{\circ}(x, \cdot) \uparrow l_{t} \quad \text { as } r \uparrow t \tag{22}
\end{equation*}
$$

- We construct (directly) the Kuznetsov measure $\boldsymbol{N}_{0}$ on $\boldsymbol{W}$ so that (Markov property):

$$
\begin{align*}
& N_{0}\left(w\left(t_{1}\right) \in \mathrm{d} x_{1}, w\left(t_{2}\right) \in \mathrm{d} x_{2}, \ldots, w\left(t_{n}\right) \in \mathrm{d} x_{n}\right) \\
& \quad=l_{t_{1}}\left(\mathrm{~d} x_{1}\right) Q_{t_{2}-t_{1}}^{\circ}\left(x_{1}, \mathrm{~d} x_{2}\right) \cdots Q_{t_{n-}-t_{n-1}}^{\circ}\left(x_{n-1}, \mathrm{~d} x_{n}\right) . \tag{23}
\end{align*}
$$

- In the special case of $h_{t} \equiv 0(t>0)$, it is the excursion law $N_{0}:=\lim _{z \downarrow 0} z^{-1} Q_{z}$, where $\boldsymbol{Q}_{z}$ is the distribution on $W$ of the CB-process $(x(t))_{t \geq 0}$ with $x(0)=z$.

Recall that $\boldsymbol{Q}_{\boldsymbol{z}}$ is the distribution on $\boldsymbol{W}$ of the CB-process $(x(t))_{t \geq 0}$ with $x(\mathbf{0})=\boldsymbol{z}$ and $\boldsymbol{N}_{0}$ is the canonical Kuznetsov measure defined by (23).

Suppose we have the following independent elements:

- $X_{t}=$ CB-process with generator $L_{0}$ given by (15);
- $N_{0}(\mathrm{~d} s, \mathrm{~d} u, \mathrm{~d} w)=$ Poisson r.m. on $(0, \infty)^{2} \times W$ with intensity $\mathrm{d} s \mathrm{~d} u N_{0}(\mathrm{~d} w)$;
- $N_{1}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)=$ Poisson r.m. on $(0, \infty)^{3} \times W$ with intensity $\mathrm{d} s \nu(\mathrm{~d} z) \mathrm{d} u Q_{z}(\mathrm{~d} w)$.

We consider the stochastic integral equation (L '11/'18+, L-Zhang '18+):

$$
\begin{gather*}
\boldsymbol{Y}_{t}=X_{t}+\int_{0}^{t} h\left(Y_{s}\right) h_{t-s} \mathrm{~d} s+\int_{0}^{t} \int_{0}^{h\left(Y_{s-}\right)} \int_{W} w(t-s) N_{0}(\mathrm{~d} s, \mathrm{~d} u, \mathrm{~d} w) \\
+\int_{0}^{t} \int_{0}^{\infty} \int_{0}^{q\left(Y_{s-}, z\right)} \int_{W} w(t-s) N_{1}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w) . \tag{24}
\end{gather*}
$$

Theorem 2 There is a pathwise unique positive càdlàg solution $\left\{Y_{t}: t \geq 0\right\}$ to (29) and the solution is a Markov process with generator $L$ defined by (17).

Recall that a CBDI-process has generator $L$ given by ( $L_{0}=$ generator of CB-process):

$$
\begin{equation*}
L f(x)=L_{0} f^{\prime \prime}(x)+h(x) f^{\prime}(x)+\int_{(0, \infty)}(f(x+z)-f(x)) q(x, z) \nu(\mathrm{d} z) . \tag{25}
\end{equation*}
$$

Example 1 When $h(x) \equiv \beta$ and $\boldsymbol{q}(x, z) \equiv 1$ are constants, the operator $L$ defined by (25) generates a classical CBI-process.

Example 2 When $\boldsymbol{h}(\boldsymbol{x}) \equiv \boldsymbol{\beta} \boldsymbol{x}$ and $\boldsymbol{q}(\boldsymbol{x}, \boldsymbol{z}) \equiv \boldsymbol{x}$, the operator $L$ defined by (25) generates a CB-process with new branching mechanism

$$
\lambda \mapsto \phi(\lambda)-\beta \lambda-\int_{0}^{\infty}\left(1-\mathrm{e}^{-\lambda z}\right) \nu(\mathrm{d} z)
$$

Example 3 Suppose that $\boldsymbol{x} \mapsto \boldsymbol{G ( x )}$ be a "good" positive function on $[0, \infty)$. By setting $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{\beta} \boldsymbol{x}-\boldsymbol{G}(\boldsymbol{x})$ and $\boldsymbol{q}(\boldsymbol{x}, \boldsymbol{z}) \equiv \mathbf{0}$ we get (CB-process with competition):

$$
L f(x)=L_{0} f(x)+\beta x f^{\prime}(x)-G(x) f^{\prime}(x)
$$

See Berestycki et al. ('17+), Lambert ('05), Pardoux ('16).

## 4. Distributions of large jumps

Using the stochastic equations, we can calculate some useful probabilities explicitly.
Theorem 3 (He-L'15) Let $\{y(t)\}$ be a CB-process with $\boldsymbol{y}(0)=x$. Then, for any $r, t>0$,

$$
\begin{equation*}
\boldsymbol{P}(s \mapsto y(s) \text { has no jump larger than } r \text { by time } t)=\exp \left\{-\boldsymbol{x} \boldsymbol{u}_{r}(t)\right\}, \tag{26}
\end{equation*}
$$

where $t \mapsto u_{r}(t)$ is the unique solution of

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{r}(t)=m(r, \infty)-\phi_{r}\left(u_{r}(t)\right), \quad u_{r}(0)=0 \tag{27}
\end{equation*}
$$

where

$$
\phi_{r}(\lambda)=\left[b+\int_{(r, \infty)} z m(d z)\right] \lambda+c \lambda^{2}+\int_{(0, r]}\left(e^{-\lambda z}-1+\lambda z\right) m(d z)
$$

Corollary 4 For $r>0$ satisfying $m(r, \infty)>0$, we have

$$
\begin{equation*}
\boldsymbol{P}(s \mapsto y(s) \text { has no jump larger than } r \text { forever })=\exp \left\{-x \phi_{r}^{-1}(m(r, \infty))\right\} . \tag{28}
\end{equation*}
$$

Remark We have not seen the counterparts of (26) and (28) in the discrete-time/state setting.

## Observations for large jumps

Let $\left\{x_{r}(t)\right\}$ be a CB-process with branching mechanism $\phi_{r}$ and $N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)$ a Poisson random measure with intensity $1_{\{z>r\}} \mathrm{d} \operatorname{sm}(\mathrm{d} z) \mathrm{d} u \boldsymbol{Q}_{z}(\mathrm{~d} w)$ independent of $\left\{x_{r}(t)\right\}$. Then the solution $\{y(t)\}$ of

$$
\begin{equation*}
y(t)=x_{r}(t)+\int_{0}^{t} \int_{r}^{\infty} \int_{0}^{y(s-)} \int_{W} w(t-s) N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w) \tag{29}
\end{equation*}
$$

is a CB-process with branching mechanism $\phi$. Observe that

$$
\begin{aligned}
&\{s\mapsto y(s) \text { has no jump larger than } r \text { by time } t\} \\
&=\left\{\int_{0}^{t} \int_{r}^{\infty} \int_{0}^{y(s-)} \int_{W} w(t-s) N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)=0\right\} \\
&=\left\{\int_{0}^{t} \int_{r}^{\infty} \int_{0}^{y(s-)} \int_{W} N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)=0\right\} \\
& \bigcap\left\{y(s)=x_{r}(s) \text { for } s \in[0, t]\right\} \\
&=\left\{\int_{0}^{t} \int_{r}^{\infty} \int_{0}^{x_{r}(s-)} \int_{W} N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)=0\right\} \\
&=\left\{\int_{0}^{t} \int_{r}^{\infty} \int_{0}^{x_{r}(s-)} \int_{W} N_{r}(\mathrm{~d} s, \mathrm{~d} z, \mathrm{~d} u, \mathrm{~d} w)=0\right\}
\end{aligned}
$$

## 5. Proof of existence of the solution

For simplicity, assume $\boldsymbol{q}(\boldsymbol{x}, \boldsymbol{z}) \equiv \mathbf{0}$. Let $\boldsymbol{Y}_{0}(\boldsymbol{t})=\boldsymbol{X}_{\boldsymbol{t}}$ and define inductively

$$
\boldsymbol{Y}_{k}(t)=X_{t}+\int_{0}^{t} h\left(Y_{k-1}(s)\right) h_{t-s} \mathrm{~d} s+\int_{0}^{t} \int_{0}^{h\left(Y_{k-1}(s-)\right)} \int_{W} w(t-s) N_{0}(\mathrm{~d} s, \mathrm{~d} u, \mathrm{~d} w) .
$$

Then

$$
\left(\int_{a}^{b}=-\int_{b}^{a}\right)
$$

$$
\begin{aligned}
& Y_{j}(t)-Y_{k}(t)=\int_{0}^{t}\left[h\left(Y_{j-1}(s)\right)-h\left(Y_{k-1}(s)\right)\right] h_{t-s} \mathrm{~d} s \\
& \quad+\int_{0}^{t} \int_{h\left(Y_{k-1}(s-)\right)}^{h\left(Y_{j-1}(s-)\right)} \int_{W} w(t-s) N_{0}(\mathrm{~d} s, \mathrm{~d} u, \mathrm{~d} w)
\end{aligned}
$$

Observe that $\left|\boldsymbol{Y}_{\boldsymbol{j}}(t)-\boldsymbol{Y}_{\boldsymbol{k}}(t)\right| \leq \boldsymbol{Z}_{j, k}(t)$, where

$$
\begin{aligned}
Z_{j, k}(t)=\int_{0}^{t} \mid & h\left(Y_{j-1}(s)\right)-h\left(Y_{k-1}(s)\right) \mid h_{t-s} \mathrm{~d} s \\
& +\int_{0}^{t} \int_{h\left(Y_{j-1}(s-)\right) \wedge h\left(Y_{k-1}(s-)\right)}^{h\left(Y_{j-1}(s-)\right) \vee h\left(Y_{k-1}(s-)\right)} \int_{W} w(t-s) N_{0}(\mathrm{~d} s, \mathrm{~d} u, \mathrm{~d} w)
\end{aligned}
$$

By a moment formula of stochastic integrals,

$$
E\left[Z_{j, k}(t)\right]=E\left[\int_{0}^{t}\left|h\left(Y_{j-1}(s)\right)-h\left(Y_{k-1}(s)\right)\right|\left(h_{t-s}+\int_{W} w(t-s) N_{0}(\mathrm{~d} w)\right) \mathrm{d} s\right]
$$

It follows that

$$
\begin{aligned}
E\left[Z_{j, k}(t)\right] & =E\left[\int_{0}^{t}\left|h\left(Y_{j-1}(s)\right)-h\left(Y_{k-1}(s)\right)\right| \mathrm{e}^{-b(t-s)} \mathrm{d} s\right] \\
& \leq \mathrm{e}^{|b| t} E\left[\int_{0}^{t} r\left(\left|Y_{j-1}(s)-Y_{k-1}(s)\right|\right) \mathrm{d} s\right] \quad \text { (Yamada-Watanabe cond.) } \\
& \leq \mathrm{e}^{|b| t} E\left[\int_{0}^{t} r\left(Z_{j-1, k-1}(s)\right) \mathrm{d} s\right] \leq \mathrm{e}^{|b| t} \int_{0}^{t} r\left(E\left[Z_{j-1, k-1}(s)\right]\right) \mathrm{d} s
\end{aligned}
$$

Let $R_{n}(t)=\sup _{j, k \geq n} E\left[Z_{j, k}(t)\right]$ and $R(t)=\lim _{n \rightarrow \infty} R_{n}(t)$. Then

$$
R_{n}(t) \leq \mathrm{e}^{|b| t} \int_{0}^{t} r\left(R_{n-1}(s)\right) \mathrm{d} s \Rightarrow R(t) \leq \mathrm{e}^{|b| t} \int_{0}^{t} r(R(s)) \mathrm{d} s \Rightarrow R(t)=0
$$

and so

$$
\lim _{j, k \rightarrow \infty} E\left[\left|Y_{j}(t)-Y_{k}(t)\right|\right] \leq \lim _{j, k \rightarrow \infty} E\left[Z_{j, k}(t)\right]=0 .
$$

With some additional work, we show

$$
\lim _{j, k \rightarrow \infty} E\left[\sup _{0 \leq s \leq t}\left|\boldsymbol{Y}_{j}(s)-\boldsymbol{Y}_{k}(s)\right|\right]=0
$$

Then $\left\{Y_{k}(t): t \geq 0\right\}, k=1,2, \cdots$ is a Cauchy sequence.

## References

1. Athreya; Ney ('72): Branching Processes. Springer.
2. Berestycki; Fittipaldi; Fontbona ('17+): Probab. Th. Rel. Fields. To appear.
3. Bertoin; Le Gall ('06): Illinois J. Math. 50, 147-181.
4. Dawson; Li ('06/'12): Ann. Probab. 34, 1103-1142 / 40, 813-857.
5. Jiao; Ma; Scotti ('17): Finance Stochastics 21, 789-813.
6. Kyprianou ('14): Fluctuations of Lévy Processes with Applications. 2nd Ed. Springer.
7. Lambert ('05): Ann. Appl. Probab. 15, 1506-1535.
8. Pardoux ('12): Probabilistic Models of Population Evolution. Springer.
9. Li ('11): Measure-Valued Branching Markov Processes. Springer.
10. Li ('18+): Sample paths of continuous-state branching processes with dependent immigration. Preprint.
11. Li; Zhang ('18+): Continuous-state branching processes with dependent immigration. Preprint (in Chinese).

