[The 4th Workshop on Branching Processes and their Applications, April 10–13, 2018, University of Extremadura, Badajoz, Spain]

Continuous-state branching processes with dependent immigration

Zenghu Li

Beijing Normal University

Based on L ('18+) and L–Zhang ('18+).

1. Branching process with immigration

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$. Let $\{\xi_{n,i}\}$ be a class of \mathbb{N} -valued i.i.d. random variables. Given $X_0 = k \in \mathbb{N}$, we can define a Galton–Watson process $\{X_n\}$ by

$$X_n = \sum_{i=1}^{X_{n-1}} \xi_{n,i}, \qquad n \ge 1.$$
 (1)

Let $\{\eta_n\}$ be a class of \mathbb{N} -valued i.i.d. random variables independent of $\{\xi_{n,i}\}$. Given $Y_0 = k \in \mathbb{N}$, we can define a Galton–Watson process with immigration $\{Y_n\}$ by

$$Y_n = \sum_{i=1}^{Y_{n-1}} \xi_{n,i} + \eta_n, \qquad n \ge 1.$$
 (2)

The above formulations do not work in the continuous-time situation.

• Let $p(j) = P(\xi_{1,1} = j)$. Then $\{X_n\}$ is a Markov chain with one-step transition matrix $Q(i, j) = p * \cdots * p(j)$ (*i*-fold convolution). The following branching property holds:

$$Q(i_1 + i_2, \cdot) = Q(i_1, \cdot) * Q(i_2, \cdot), \qquad i_1, i_2 \in \mathbb{N}.$$
(3)

• Let $\gamma(j) = \mathbf{P}(\eta_1 = j)$. Then $\{Y_n\}$ is a Markov chain with one-step transition matrix:

$$P(i,\cdot) := Q(i,\cdot) * \gamma(\cdot), \qquad i \in \mathbb{N}.$$
(4)

A continuous-time Markov process with state space $[0, \infty)$ is called a continuousstate branching process if its transition probability $Q_t(x, dy)$ satisfies:

$$Q_t(x_1 + x_2, \cdot) = Q_t(x_1, \cdot) * Q_t(x_2, \cdot), \qquad x_1, x_2, t \ge 0.$$
(5)

This is the (continuous-time) branching property, which yields the following structures:

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x,dy) = e^{-xv_t(\lambda)}, \qquad x,t,\lambda \ge 0,$$
(6)

where $t \mapsto v_t(\lambda)$ is the positive solution to

$$\frac{d}{dt}v_t(\lambda) = -\phi(v_t(\lambda)), \quad v_t(\lambda) = \lambda.$$
(7)

• The function ϕ is the branching mechanism give by

$$\phi(z) = bz + cz^{2} + \int_{(0,\infty)} \left(e^{-zu} - 1 + zu \right) m(\mathrm{d}u), \tag{8}$$

where $c \ge 0$ and b are constants and $(u \wedge u^2)m(du)$ is a finite measure on $(0, \infty)$.

References: Feller ('51), Lamperti ('67), Silverstein ('68), etc.

Books discussing CB- and CBI-processes

Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 196

K. B. Athreya · P. E. Ney

Branching Processes

Table of Contents

Chapter V. Multi-Type Branching Processes

1.	Introduction and Definitions						181
2.	Moments and the Frobenius Theorem						184
3.	Extinction Probability and Transience						186
4.	Limit Theorems for the Subcritical Case						186
5.	Limit Theorems for the Critical Case						189
6.	The Supercritical Case and Geometric Growth .						192
7.	The Continuous Time, Multitype Markov Case .						199
8.	Linear Functionals of Supercritical Processes						209
9.	Embedding of Urn Schemes into Continuous Time Markov						
	Branching Processes						219
10.	The Multitype Age-Dependent Process						225
Comp	elements and Problems V						227

Chapter VI. Special Processes

1. A One Dimensional Branching Random	W	alk				230
2. Cascades; Distributions of Generations				239		
3. Branching Diffusions						242
4. Martingale Methods						246
5. Branching Processes with Random Envir	on	mer	ıts			249
6. Continuous State Branching Processes.						257
7. Immigration						262
8. Instability						266
Complements and Problems VI					÷	267
Bibliography						268
List of Symbols						282
Author Index						283
Subject Index		• •				285

Athreya-Ney (Springer '72) - Section VI.2

Andreas E. Kyprianou

Fluctuations of Lévy Processes with Applications

Introductory Lectures

Second Edition

Contents

10	Ruin Problems and Gerber–Shiu Theory 277 10.1 Review of Distributional Properties at Ruin 278 10.2 The Gerber–Shiu Measure 280 10.3 Reflection Strategies 283 10.4 Refraction Strategies 287 10.5 Perturbed Processes and Tax 300 Exercises 305
11	Applications to Optimal Stopping Problems 309 11.1 Sufficient Conditions for Optimality 309 11.2 The McKean Optimal Stopping Problem 311 11.3 Smooth Fit versus Continuous Fit 316 11.4 The Novikov–Shiryaev Optimal Stopping Problem 320 11.5 The Shepp–Shiryaev Optimal Stopping Problem 326 Exercises 334
12	Continuous-State Branching Processes
	12.1 The Lamperti Transform
	12.2 Long-term Denaviour
	12.2 Long term behaviou 340 12.3 Conditioned Processes and Immigration 340 12.4 Concluding Remarks 358
	12.2 Conditioned Processes and Immigration 340 12.3 Conditioned Processes and Immigration 347 12.4 Concluding Remarks 358 Exercises 359
13	12.2 tong-term behaviou 340 12.3 Conditioned Processes and Immigration 347 12.4 Concluding Remarks 358 Exercises 359 Positive Self-Similar Markov Processes 365 13.1 Definition and Examples 366 13.2 Conditioned Processes and Self-similarity 370 13.3 The Second Lamperti Transform 375 13.4 Lamperti-stable Processes 383 13.5 Self-Similar Continuous-state Branching Processes 393 13.6 Entrance Laws and Recurrent Extensions 395 13.7 Spectrally Negative Processes 400 Exercises 410

XV

Kyprianou (Springer '06/'14) – Chapter 12

Probability and Its Applications

Zenghu Li

Measure-Valued Branching Markov Processes

Pre	face .	v
1	Ran	dom Measures on Metric Spaces 1
	1.1	Borel Measures 1
	1.2	Laplace Functionals
	1.3	Poisson Random Measures
	1.4	Infinitely Divisible Random Measures 15
	1.5	Lévy–Khintchine Type Representations
	1.6	Notes and Comments
2	Mea	sure-Valued Branching Processes
	2.1	Definitions and Basic Properties
	2.2	Integral Evolution Equations
	2.3	Dawson–Watanabe Superprocesses
	2.4	Examples of Superprocesses 44
	2.5	Some Moment Formulas 47
	2.6	Notes and Comments
3	One	-Dimensional Branching Processes
	3.1	Continuous-State Branching Processes 57
	3.2	Long-Time Evolution Rates
	3.3	Immigration and Conditioned Processes
	3.4	More Conditional Limit Theorems 70
	3.5	Scaling Limits of Discrete Processes
	3.6	Notes and Comments
4	Bra	nching Particle Systems
	4.1	Particle Systems with Local Branching 87
	4.2	Scaling Limits of Local Branching Systems
	4.3	General Branching Particle Systems
	4.4	Scaling Limits of General Branching Systems 100

Li (Springer '11) - Chapter 3 and Section 9.5

Mathematical Biosciences Institute Lecture Series 1.6 Stochastics in Biological Systems

Étienne Pardoux

Probabilistic Models of Population Evolution

Scaling Limits, Genealogies and Interactions

1	Intr	oduction	1
2	Bra	nching Processes	5
	2.1	Discrete Time Bienaymé-Galton-Watson Processes	5
	2.2	Continuous Time Markov Branching Process	9
		2.2.1 The General Case	9
		2.2.2 The Binary Branching Case	11
3	Con	vergence to a Continuous State Branching Process	13
	3.1	Convergence of Discrete Time Branching Processes	13
	3.2	The Individuals with an Infinite Line of Descent	18
	3.3	Convergence of Continuous Time Branching Processes	18
	3.4	Convergence of Continuous Time Binary Branching Processes	20
	3.5	Convergence to an ODE	21
4	Con	tinuous State Branching Process (CSBP)	23
	4.1	Space-Time White Noise, Dawson-Li SDE, and the Branching	
		Property	24
	4.2	Laplace Functional of a CSBP	27
	4.3	The Individuals Whose Progeny Survives During tN Generations	31
	4.4	Consequence for the CSBP	33
	4.5	The Prolific Individuals	34
	4.6	A More General Dawson–Li SDE	38
5	Gen	ealogies	45
	5.1	Preliminaries	46
	5.2	Correspondence of Laws	49

Pardoux (Springer '16) - Chapter 4

A Markov process with state space $[0, \infty)$ is called a continuous-state branching process with immigration if its transition probability $P_t(x, dy)$ has the decomposition:

$$P_t(x,\cdot) = Q_t(x,\cdot) * \gamma_t(\cdot), \qquad x,t \ge 0.$$
(9)

where $(\gamma_t)_{t\geq 0}$ is a family of probability distributions on $[0,\infty)$.

Proposition 0 (L '11) The kernels $(P_t)_{t>0}$ form a semigroup if and only if

$$\gamma_{r+t} = (\gamma_r Q_t) * \gamma_t, \qquad r, t \ge 0, \tag{10}$$

where

$$(\gamma_r Q_t)(\cdot) = \int_{[0,\infty)} \gamma_r(dx) Q_t(x,\cdot).$$
⁽¹¹⁾

• The skew-convolution property (10) yields the following structure:

$$\int_{[0,\infty)} e^{-\lambda y} \gamma_t(dy) = \exp\Big\{-\int_0^t \psi(v_s(\lambda))ds\Big\}.$$
(12)

• The function ψ is the immigration mechanism given by

$$\psi(z) = \beta z + \int_{(0,\infty)} \left(1 - e^{-zu}\right) \nu(\mathrm{d}u),\tag{13}$$

where $\beta \geq 0$ and $(1 \wedge u)\nu(du)$ is a finite measure on $(0, \infty)$.

The CBI-process is also known as "CIR-model" in mathematical finance; e.g, Bernis–Scotti ('18+)., Jiao et al. ('17).

Finance Stoch 21(3), 789-813, 2017. DOI 10.1007/s00780-017-0333-7

Alpha-CIR model with branching processes in sovereign interest rate modeling

Ying Jiao^{1,2} · Chunhua Ma³ · Simone Scotti

Abstract We introduce a class of interest rate models, called the α -CIR model, which is a natural extension of the standard CIR model by adding a jump part driven by α -stable Lévy processes with index $\alpha \in (1, 2]$. We deduce an explicit expression for the bond price by using the fact that the model belongs to the family of CBI and affine processes, and analyze the bond price and bond yield behaviors. The α -CIR model allows us to describe in a unified and parsimonious way several recent observations on the sovereign bond market such as the persistency of low interest rates together with the presence of large jumps. Finally, we provide a thorough analysis of the jumps, and in particular the large jumps.

Structures of a biological population:

natives + immigrants (immigrants reproduce in the same way as the natives)

Types of immigration:

individual immigrants + group immigrants (continuous immigration + discontinuous immigration)

(14)

Problem Construction of immigration models reflecting those structures.

2. Generators of three population models

The generators of the CB- and the CBI-processes are known by the results of Lamperti ('67) and Kawazu–Watanabe ('71); see also Aliev ('85), Aliev–Shchurenkov ('82), Grey ('74), Grimvall ('74).

• A continuous-state branching process (CB-process) without immigration has generator L_0 defined by (determined by the branching mechanism ϕ):

$$L_0 f(x) = x \Big[c f''(x) - b f'(x) + \int_{(0,\infty)} \big(f(x+z) - f(x) - z f'(x) \big) m(\mathrm{d}z) \Big], (15)$$

where the part in [...] is the generator of a spectrally positive Lévy process. (Linear!)

• The continuous-state branching process with immigration (CBI-process) has generator L_1 defined by (determined by the branching mechanism ϕ and the immigration mechanism ψ):

$$L_1 f(x) = L_0 f''(x) + \left[\beta f'(x) + \int_{(0,\infty)} \left(f(x+z) - f(x)\right)\nu(\mathrm{d}z)\right], \quad (16)$$

where the part in [...] is the generator of an increasing Lévy process. (Affine!)

• By a continuous-state branching process with <u>dependent</u> immigration (CBDI-process) we mean a continuous-times Markov process with generator L defined by

$$Lf(x) = L_0 f''(x) + \frac{h(x)}{h(x)} f'(x) + \int_{(0,\infty)} \left(f(x+z) - f(x) \right) \frac{q(x,z)}{\nu(\mathrm{d}z)}, \quad (17)$$

where (h, q) are positive functions representing the dependent immigration rates. We assume the following conditions:

• (linear growth condition) there is a constant $K \ge 0$ so that

$$h(x)+\int_0^\infty q(x,z) z
u(\mathrm{d} z) \leq K(1+x), \qquad x\geq 0;$$

• (Yamada-Watanabe condition) there is an increasing and concave function $u \mapsto r(u)$ on $[0, \infty)$ so that $\int_{0+} r(u)^{-1} du = \infty$ and, for $x, y \ge 0$,

$$|h(x)-h(y)|+\int_0^\infty |q(x,z)-q(y,z)| z
u(\mathrm{d} z)\leq r(|x-y|).$$

This talk: A construction of the CBDI-process.

3. Construction of the CBDI-process

Recall that a CB-process (without immigration) has transition semigroup $(Q_t)_{t\geq 0}$ characterized by

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x, \mathrm{d}y) = e^{-xv_t(\lambda)}, \qquad t, \lambda, x \ge 0,$$
(18)

where $t \mapsto v_t(\lambda)$ is the unique positive solution of

$$\frac{\partial}{\partial t}v_t(\lambda) = -\phi(v_t(\lambda)), \quad v_0(\lambda) = \lambda.$$
(19)

The function ϕ is the branching mechanism given by

$$\phi(\lambda) = b\lambda + c\lambda^2 + \int_{(0,\infty)} (e^{-\lambda z} - 1 + \lambda z) m(dz).$$
⁽²⁰⁾

Observations: (i) $(Q_t)_{t\geq 0}$ is a Feller semigroup; (ii) zero is a trap for the CB-process; (iii) $Q_t(x, \cdot)$ is infinitely divisible distribution.

- The CB-process can be realized in $W := \{ \text{positive càd} \text{àg paths } (w(t))_{t \ge 0} \}.$
- By restricting $(Q_t)_{t\geq 0}$ on $(0,\infty)$, we obtain a sub-Markov semigroup $(Q_t^\circ)_{t\geq 0}$.

Since $Q_t(x, \cdot)$ is infinite divisible, we have the canonical representation:

$$v_t(\lambda) = h_t \lambda + \int_{(0,\infty)} (1 - e^{-\lambda z}) l_t(\mathrm{d}z), \qquad (21)$$

where $h_t \ge 0$ and $zl_t(dz)$ is a finite measure on $(0, \infty)$.

• The family $(l_t)_{t>0}$ is an entrance rule for $(Q_t^{\circ})_{t\geq 0}$ in the sense that, for any t>0,

$$l_r Q_{t-r}^{\circ} := \int_{(0,\infty)} l_r(\mathrm{d}x) Q_{t-r}^{\circ}(x,\cdot) \uparrow l_t \quad \text{as } r \uparrow t.$$
(22)

• We construct (directly) the Kuznetsov measure **N**₀ on W so that (Markov property):

$$\mathbf{N}_{0}(w(t_{1}) \in \mathrm{d}x_{1}, w(t_{2}) \in \mathrm{d}x_{2}, \dots, w(t_{n}) \in \mathrm{d}x_{n})$$

= $\mathbf{l}_{t_{1}}(\mathrm{d}x_{1})Q_{t_{2}-t_{1}}^{\circ}(x_{1}, \mathrm{d}x_{2})\cdots Q_{t_{n}-t_{n-1}}^{\circ}(x_{n-1}, \mathrm{d}x_{n}).$ (23)

• In the special case of $h_t \equiv 0$ (t > 0), it is the excursion law $N_0 := \lim_{z \downarrow 0} z^{-1} Q_z$, where Q_z is the distribution on W of the CB-process $(x(t))_{t>0}$ with x(0) = z.

Recall that Q_z is the distribution on W of the CB-process $(x(t))_{t\geq 0}$ with x(0) = zand N_0 is the canonical Kuznetsov measure defined by (23).

Suppose we have the following independent elements:

- $X_t = CB$ -process with generator L_0 given by (15);
- $N_0(ds, du, dw) =$ Poisson r.m. on $(0, \infty)^2 \times W$ with intensity $ds du N_0(dw)$;
- $N_1(\mathrm{d} s, \mathrm{d} z, \mathrm{d} u, \mathrm{d} w) = \text{Poisson r.m. on } (0, \infty)^3 \times W$ with intensity $\mathrm{d} s\nu(\mathrm{d} z) \mathrm{d} u \mathbf{Q}_z(\mathrm{d} w)$.

We consider the stochastic integral equation (L '11/'18+, L–Zhang '18+):

$$Y_{t} = X_{t} + \int_{0}^{t} h(Y_{s})h_{t-s}ds + \int_{0}^{t} \int_{0}^{h(Y_{s-})} \int_{W} w(t-s)N_{0}(ds, du, dw) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{q(Y_{s-},z)} \int_{W} w(t-s)N_{1}(ds, dz, du, dw).$$
(24)

Theorem 2 There is a pathwise unique positive càdlàg solution $\{Y_t : t \ge 0\}$ to (29) and the solution is a Markov process with generator *L* defined by (17).

..... see (14) and (17).

Recall that a CBDI-process has generator L given by $(L_0 = \text{generator of CB-process})$:

$$Lf(x) = L_0 f''(x) + \frac{h(x)f'(x)}{h(x)} + \int_{(0,\infty)} \left(f(x+z) - f(x) \right) \frac{q(x,z)}{\mu(dz)} \nu(dz).$$
(25)

Example 1 When $h(x) \equiv \beta$ and $q(x, z) \equiv 1$ are constants, the operator *L* defined by (25) generates a classical CBI-process.

Example 2 When $h(x) \equiv \beta x$ and $q(x, z) \equiv x$, the operator *L* defined by (25) generates a CB-process with new branching mechanism

$$\lambda\mapsto \phi(\lambda)-eta\lambda-\int_0^\infty(1-{
m e}^{-\lambda z})
u({
m d} z).$$

Example 3 Suppose that $x \mapsto G(x)$ be a "good" positive function on $[0, \infty)$. By setting $h(x) = \beta x - G(x)$ and $q(x, z) \equiv 0$ we get (CB-process with competition):

$$Lf(x) = L_0f(x) + \beta x f'(x) - G(x)f'(x).$$

See Berestycki et al. ('17+), Lambert ('05), Pardoux ('16).

4. Distributions of large jumps

Using the stochastic equations, we can calculate some useful probabilities explicitly.

Theorem 3 (He–L '15) Let $\{y(t)\}$ be a CB-process with y(0) = x. Then, for any r, t > 0,

 $P(s \mapsto y(s) \text{ has no jump larger than } r \text{ by time } t) = \exp\{-xu_r(t)\},$ (26)

where $t\mapsto u_r(t)$ is the unique solution of

$$\frac{\partial}{\partial t}u_r(t) = m(r,\infty) - \phi_r(u_r(t)), \qquad u_r(0) = 0, \tag{27}$$

where

$$\phi_r(\lambda) = \Big[b + \int_{(r,\infty)} zm(dz)\Big]\lambda + c\lambda^2 + \int_{(0,r]} (e^{-\lambda z} - 1 + \lambda z)m(dz).$$

Corollary 4 For r > 0 satisfying $m(r, \infty) > 0$, we have

 $P(s \mapsto y(s) \text{ has no jump larger than } r \text{ forever}) = \exp\{-x\phi_r^{-1}(m(r,\infty))\}.$ (28)

Remark We have not seen the counterparts of (26) and (28) in the discrete-time/state setting.

Observations for large jumps

Let $\{x_r(t)\}\$ be a CB-process with branching mechanism ϕ_r and $N_r(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u, \mathrm{d}w)$ a Poisson random measure with intensity $1_{\{z>r\}}\mathrm{d}sm(\mathrm{d}z)\mathrm{d}u\boldsymbol{Q}_z(\mathrm{d}w)$ independent of $\{x_r(t)\}$. Then the solution $\{y(t)\}\$ of

$$y(t) = x_r(t) + \int_0^t \int_r^\infty \int_0^{y(s-)} \int_W w(t-s) N_r(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u, \mathrm{d}w)$$
(29)

is a CB-process with branching mechanism ϕ . Observe that

$$s \mapsto y(s) \text{ has no jump larger than } r \text{ by time } t \Big\}$$

$$= \Big\{ \int_0^t \int_r^\infty \int_0^{y(s-)} \int_W w(t-s) N_r(ds, dz, du, dw) = 0 \Big\}$$

$$= \Big\{ \int_0^t \int_r^\infty \int_0^{y(s-)} \int_W N_r(ds, dz, du, dw) = 0 \Big\}$$

$$\bigcap \Big\{ y(s) = x_r(s) \text{ for } s \in [0, t] \Big\}$$

$$= \Big\{ \int_0^t \int_r^\infty \int_0^{x_r(s-)} \int_W N_r(ds, dz, du, dw) = 0 \Big\}$$

$$\bigcap \Big\{ y(s) = x_r(s) \text{ for } s \in [0, t] \Big\}$$

$$= \Big\{ \int_0^t \int_r^\infty \int_0^{x_r(s-)} \int_W N_r(ds, dz, du, dw) = 0 \Big\}.$$

5. Proof of existence of the solution

For simplicity, assume $q(x,z)\equiv 0$. Let $Y_0(t)=X_t$ and define inductively

$$Y_k(t) = X_t + \int_0^t h(Y_{k-1}(s))h_{t-s} ds + \int_0^t \int_0^{h(Y_{k-1}(s-))} \int_W w(t-s)N_0(ds, du, dw).$$

Then

$$\left(\int_{a}^{b}=-\int_{b}^{a}\right)$$

$$Y_{j}(t) - Y_{k}(t) = \int_{0}^{t} \left[h(Y_{j-1}(s)) - h(Y_{k-1}(s)) \right] h_{t-s} ds$$

$$+ \int_{0}^{t} \int_{h(Y_{k-1}(s-))}^{h(Y_{j-1}(s-))} \int_{W} w(t-s) N_{0}(ds, du, dw)$$

Observe that $|Y_j(t) - Y_k(t)| \leq Z_{j,k}(t)$, where

$$Z_{j,k}(t) = \int_0^t \left| h(Y_{j-1}(s)) - h(Y_{k-1}(s)) \right| h_{t-s} ds \\ + \int_0^t \int_{h(Y_{j-1}(s-)) \wedge h(Y_{k-1}(s-))}^{h(Y_{j-1}(s-)) \vee h(Y_{k-1}(s-))} \int_W w(t-s) N_0(ds, du, dw)$$

By a moment formula of stochastic integrals,

$$\boldsymbol{\textit{E}}[Z_{j,k}(t)] \;=\; \boldsymbol{\textit{E}}\bigg[\int_{0}^{t} \Big| h(Y_{j-1}(s)) - h(Y_{k-1}(s)) \Big| \Big(h_{t-s} + \int_{W} w(t-s) \boldsymbol{\textit{N}}_{0}(\mathrm{d}w) \Big) \mathrm{d}s \bigg].$$

It follows that

$$\begin{split} \mathbf{\textit{E}}[Z_{j,k}(t)] \ &= \ \mathbf{\textit{E}}\Big[\int_{0}^{t} \Big|h(Y_{j-1}(s)) - h(Y_{k-1}(s))\Big| \mathrm{e}^{-b(t-s)} \mathrm{d}s\Big] \\ &\leq \ \mathrm{e}^{|b|t} \mathbf{\textit{E}}\Big[\int_{0}^{t} r(|Y_{j-1}(s) - Y_{k-1}(s)|) \mathrm{d}s\Big] \quad (\text{Yamada-Watanabe cond.}) \\ &\leq \ \mathrm{e}^{|b|t} \mathbf{\textit{E}}\Big[\int_{0}^{t} r(Z_{j-1,k-1}(s)) \mathrm{d}s\Big] \leq \ \mathrm{e}^{|b|t} \int_{0}^{t} r(\mathbf{\textit{E}}[Z_{j-1,k-1}(s)]) \mathrm{d}s. \end{split}$$

Let $R_n(t) = \sup_{j,k \geq n} \pmb{E}[Z_{j,k}(t)]$ and $R(t) = \lim_{n o \infty} R_n(t).$ Then

$$R_n(t) \leq \mathrm{e}^{|b|t} \int_0^t r(R_{n-1}(s)) \mathrm{d}s \Rightarrow R(t) \leq \mathrm{e}^{|b|t} \int_0^t r(R(s)) \mathrm{d}s \Rightarrow R(t) = 0,$$

and so

$$\lim_{j,k\to\infty} \boldsymbol{\mathsf{E}}[|Y_j(t)-Y_k(t)|] \leq \lim_{j,k\to\infty} \boldsymbol{\mathsf{E}}[Z_{j,k}(t)] = 0.$$

With some additional work, we show

$$\lim_{j,k o\infty} oldsymbol{\mathcal{E}} \Big[\sup_{0\leq s\leq t} |Y_j(s)-Y_k(s)| \Big] = 0.$$

Then $\{Y_k(t): t \ge 0\}$, $k = 1, 2, \cdots$ is a Cauchy sequence.

References

- 1. Athreya; Ney ('72): Branching Processes. Springer.
- 2. Berestycki; Fittipaldi; Fontbona ('17+): Probab. Th. Rel. Fields. To appear.
- 3. Bertoin; Le Gall ('06): Illinois J. Math. 50, 147–181.
- 4. Dawson; Li ('06/'12): Ann. Probab. 34, 1103-1142 / 40, 813-857.
- 5. Jiao; Ma; Scotti ('17): Finance Stochastics 21, 789-813.
- 6. Kyprianou ('14): Fluctuations of Lévy Processes with Applications. 2nd Ed. Springer.
- 7. Lambert ('05): Ann. Appl. Probab. 15, 1506–1535.
- 8. Pardoux ('12): Probabilistic Models of Population Evolution. Springer.
- 9. Li ('11): Measure-Valued Branching Markov Processes. Springer.
- 10. Li ('18+): Sample paths of continuous-state branching processes with dependent immigration. Preprint.
- 11. Li; Zhang ('18+): Continuous-state branching processes with dependent immigration. Preprint (in Chinese).

