[The 4th Workshop on Branching Processes and their Applications, April 10—13, 2018, Uni-
versity of Extremadura, Badajoz, Spain]

Continuous-state branching processes
with dependent immigration

Zenghu Li

Beijing Normal University

Based on L ('18+) and L—Zhang ('18+).



1. Branching process with immigration

Let N = {0,1,2,...}. Let {{,,:} be a class of N-valued i.i.d. random variables.
Given Xy = k € N, we can define a Galton—Watson process {X,, } by

X'n—l
Xn= Y &ni, n>1L (1)
=1

Let {n, } be a class of N-valued i.i.d. random variables independent of {£,,;}. Given
Yo = k € N, we can define a Galton—-Watson process with immigration {Y,, } by
Yn-1
Yo=Y &nitmm, n>L )
=1

The above formulations do not work in the continuous-time situation.

® Let p(j) = P(&1,1 = j). Then {X,} is a Markov chain with one-step transition matrix
Q(i,7) = p*--- % p(g) (¢-fold convolution). The following branching property holds:

Q(zl + i, ) = Q(ila ) * Q(i27 ’)7 11,12 € N. (3)

® Letv(j) = P(m1 = 7). Then {Y,,} is a Markov chain with one-step transition matrix:

P(i,-) := Qi) *v(+), t € N. “4)



A continuous-time Markov process with state space [0, oo) is called a continuous-
state branching process if its transition probability Q;(x, dy) satisfies:

Qi(T1 + x2,+) = Q(T1, ) * Qt(x2,-), x1,x2,t > 0. (5)
This is the (continuous-time) branching property, which yields the following structures:
/[0 ) e NQy(x, dy) = e~ vV z,t, A >0, 6)
where t — v () is the positive solution to
d
avt(A) = —¢(ve(A)), ve(A) = A )
® The function ¢ is the branching mechanism give by
d(z) = bz 4+ c2? + 000 (e™** — 1 4+ zu)m(du), (8)
where ¢ > 0 and b are constants and (u A u?)m(du) is a finite measure on (0, co).

References: Feller ('51), Lamperti ('67), Silverstein ('68), etc.
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A Markov process with state space [0, c0) is called a continuous-state branching
process with immigration if its transition probability P;(x, dy) has the decomposition:

P(z,-) = Qc(z, ) * (), z,t > 0. ©)
where (v¢)¢>0 is a family of probability distributions on [0, co).
Proposition 0 (L '11) The kernels (P;).>o form a semigroup if and only if
Yr4t = (WwQt) * v,  7T,E >0, (10)
where

(1 Q0)() = / e ()@, ). (an

[0,00)

® The skew-convolution property (10) yields the following structure:

ot
[ ey =exp{ - [ w(o.0)ds}. (12)
[0,00) 0
® The function 4 is the immigration mechanism given by
W(z) = Bz + / (1 — e *")r(du), (13)
(0,00)

where B > 0 and (1 A u)v(du) is a finite measure on (0, co).



The CBl-process is also known as “CIR-model” in mathematical finance;
e.g, Bernis—Scotti ('18+)., Jiao et al. ('17).

Finance Stoch 21(3), 789-813, 2017.
DOI 10.1007/s00780-017-0333-7

Alpha-CIR model with branching processes
in sovereign interest rate modeling

Ying Jiao'2 . Chunhua Ma?3 - Simone Scotti

Abstract We introduce a class of interest rate models, called the «-CIR model,
which is a natural extension of the standard CIR model by adding a jump part driven
by «-stable Lévy processes with index o € (1, 2]. We deduce an explicit expression
for the bond price by using the fact that the model belongs to the family of CBI and
affine processes, and analyze the bond price and bond yield behaviors. The «-CIR
model allows us to describe in a unified and parsimonious way several recent obser-
vations on the sovereign bond market such as the persistency of low interest rates
together with the presence of large jumps. Finally, we provide a thorough analysis of
the jumps, and in particular the large jumps.



Structures of a biological population:

natives 4+ immigrants
(immigrants reproduce in the same way as the natives)

Types of immigration:

individual immigrants + group immigrants
(continuous immigration 4 discontinuous immigration)

(14)

Problem Construction of immigration models reflecting those structures.



2. Generators of three population models

The generators of the CB- and the CBl-processes are known by the results of Lam-
perti ('67) and Kawazu—Watanabe ('71); see also Aliev ('85), Aliev—Shchurenkov ('82),
Grey ('74), Grimvall ('74).

® A continuous-state branching process (CB-process) without immigration has gen-
erator Ly defined by (determined by the branching mechanism ¢):

Lof(z) = z|cf”(x) — bf'(x) + /( ) (f(ac 4+ 2z) — f(z) — zf'(ac))m(dz)},(lS)
0,00

where the part in [...] is the generator of a spectrally positive Lévy process. (Linear!)

® The continuous-state branching process with immigration (CBI-process) has gen-

erator L, defined by (determined by the branching mechanism ¢ and the immigration
mechanism ):

Lif(@) = Lof"@) + [pf@ + | (fla+2) - f@)@)], a6

0,00

where the partin [...] is the generator of an increasing Lévy process. (Affine!)



® By a continuous-state branching process with dependent immigration (CBDI-process)
we mean a continuous-times Markov process with generator L defined by

Lf(x) = Lof"(x) + h(z)f (=) + /(O ) (f(z +2) — f(=))a(z, 2)v(dz), (A7)

where (h, q) are positive functions representing the dependent immigration rates.

We assume the following conditions:
e (linear growth condition) there is a constant K > 0 so that
h(x) +/ q(xz,z)zv(dz) < K(1 4+ x), x > 0;
0

¢ (Yamada-Watanabe condition) there is an increasing and concave function u +—
r(u) on [0, c0) so that f0+ r(u)~tdu = oo and, for z,y > 0,

Ih(z) — h(y)| + /0 " a2, 2) — el 2)zv(dz) < r(lz — yl).

This talk: A construction of the CBDI-process.



3. Construction of the CBDI-process

Recall that a CB-process (without immigration) has transition semigroup (Q¢)¢>0
characterized by

/ e NQy(z,dy) = e N, Az >0, (18)
[0,00)
where t — v () is the unique positive solution of

7]

avt()\) = —@(ve(A)); vo(A) = A (19)

The function ¢ is the branching mechanism given by

d(N) = b + cA? + (e™** — 1 4 Az)m(dz). (20)
(0,00)

Observations: (i) (Q:):>o is a Feller semigroup; (ii) zero is a trap for the CB-process;
(i) Q¢ (z, -) is infinitely divisible distribution.

® The CB-process can be realized in W := {positive cadlag paths (w(t)):>o0}-

® By restricting (Q¢)¢>0 on (0, co), we obtain a sub-Markov semigroup (Q7)¢>o-



Since Q:(x, -) is infinite divisible, we have the canonical representation:
vs(A) = hyA +/ (1 — e )l (dz), (21)
(0700)

where hy > 0 and zl;(dz) is a finite measure on (0, co).

® The family (I;):~0 is an entrance rule for (Qy):>0 in the sense that, for any t > 0,

Qi ==/ - L (dz)Q7_,.(z,+) T 1t asr Tt (22)

® We construct (directly) the Kuznetsov measure Ny on W so that (Markov property):
No(w(t1) € dxz1, w(tz) € dxa, ..., w(t,) € dxy,)

= I, (da:l)ng_tl (xh dw2) ce Qf?n—tn_1 (wn—ly dxn) (23)

® In the special case of hy = 0 (t > 0), it is the excursion law Ng := lim; o 2z~ 1Q,,
where Q. is the distribution on W of the CB-process (z(t))¢>o With (0) = =.



Recall that Q. is the distribution on W of the CB-process (z(t)):>o with (0) = =z
and N, is the canonical Kuznetsov measure defined by (23).

Suppose we have the following independent elements:

e X; = CB-process with generator Lq given by (15);
e Ny(ds,du,dw) = Poisson r.m. on (0, 00)2? x W with intensity dsduNy(dw);

e N;(ds,dz,du,dw) = Poissonr.m. on (0, c0)2 x W with intensity dsv(dz)duQ. (dw).

We consider the stochastic integral equation (L *11/'18+, L—Zhang ’18+):

t t rh(Ys—)
Y; = Xt—l—/ h(Ys)ht_sds—}—/ / / w(t — s)Np(ds, du, dw)
0 0 Jo w

t S q(Ys—,z)
+/ / / / w(t — s)N1(ds,dz,du, dw). (24)
0 Jo 0 w

Theorem 2 There is a pathwise unique positive cadlag solution {Y; : t > 0} to (29)
and the solution is a Markov process with generator L defined by (17).

...... see (14) and (17).



Recall that a CBDI-process has generator L given by (Lo = generator of CB-process):

Lf(xz) = Lof"(x) + h(z)f'(z) + /(O ) (f(z +2) — f(=))a(z, z)v(dz). (25

Example 1 When h(z) = 8 and g(x, z) = 1 are constants, the operator L defined
by (25) generates a classical CBI-process.

Example 2 When h(z) = Bx and q(x,z) = =, the operator L defined by (25)
generates a CB-process with new branching mechanism

A= d(A) — B — / (1 — e ) (dz).
JO
Example 3 Suppose that x — G(x) be a “good” positive function on [0, c0). By
setting h(x) = Bx — G(x) and q(x, z) = 0 we get (CB-process with competition):
Lf(z) = Lof(z) + Bz f'(z) — G(z)f'(z).

See Berestycki et al. ("17+), Lambert ('05), Pardoux (’16).



4. Distributions of large jumps
Using the stochastic equations, we can calculate some useful probabilities explicitly.

Theorem 3 (He—-L '15) Let {y(t)} be a CB-process with y(0) = x. Then, for any
r,t > 0,

P(s — y(s) has no jump larger than r by time t) = exp{—xu.(t)}, (26)
where t — wu,(t) is the unique solution of
o
aur(t) = m(r,o0) — ¢r(ur(t)), ur(0) = 0, (27)
where
or(A) = {b + zm(dz)})\ +eX? + (e — 1 4+ Az)m(dz).
(r;00) (0,7]

Corollary 4 Forr > 0 satisfying m(r,c0) > 0, we have

P(s — y(s) has no jump larger than r forever) = exp{—xz¢; ' (m(r,o0))}. (28)

Remark We have not seen the counterparts of (26) and (28) in the discrete-time/state
setting.



Observations for large jumps

Let {«.(t)} be a CB-process with branching mechanism ¢, and N, (ds,dz,du,dw) a
Poisson random measure with intensity 1;.~,3dsm(dz)duQ. (dw) independent of {z,.(t)}.
Then the solution {y(¢)} of

t poo  ry(s—)
y(t) = x.(t) + / / / / w(t — s)N,(ds,dz, du, dw) (29)
o Jr 0 w
is a CB-process with branching mechanism ¢. Observe that

{s — y(s) has no jump larger than r by time t}

_ { / I /0”‘8:’ [ e N a2, du,du) = 0}
{/0 /:o /:(s )/WNT(ds,dz,du,dw) :0}

N {y(s) = 2,(s) fors € [o,t]}

t poo pxp(s—)
{/ / / / N, (ds,dz,du, dw) = O}
0o Jr 0 w

N {y(s) — z.(s) for s € [o,t]}

-t oo z.(s—)
{/ / / / N,(ds,dz,du,dw) = 0}.
0o Jr 0 w



5. Proof of existence of the solution

For simplicity, assume q(x, z) = 0. Let Yy (t) = X and define inductively
t t rh(Yie—1(s—))
Ye(t) = X; —|—/ h(Yi—1(s))hi_sds —|—/ / / w(t — s)No(ds, du, dw).
0 0 JO w
b a
Then (fo=—1)

Y;(t) — Y(t) = /Ot [h(Yj—l(S)) - h(Yk—l(S))}ht—st e
+ /Ot /h(Yj_l(S_)) /W w(t — s)No(ds, du, dw)

h(Ye—1(s—))

Observe that |Y;(t) — Yi(t)| < Z; 1 (t), where

Zix(t) = / t\h(Yj_us))—h(Yk_l(s»]ht_sds

t rh(Y;—1(s—))Vh(Yie-1(s—))
+/ / / w(t — s)No(ds, du, dw)
0 Jh(Yj—1(s=)Ah(Yi—_1(s—)) JW

By a moment formula of stochastic integrals,

E[Z;1(t)] = E[/Ot h(¥5-a(s)) —h(Yk_l(s))(h,t_s+/Ww(t—s)N0(dw))ds}



It follows that

E[Z;x(t)] = E| / tﬂh(Yj_l(s» — A(Yi-1(s))[e " )ds]

t
< elbltE[/O r(|Yj_1(s)—Yk_1(s)|)ds] (Yamada—Watanabe cond.)

< e'b“’E[/OtT(Zj—l,k—l(S))dS} < eltlt /01t r(E[Z;—1,k-1(s)])ds.

Let R (t) = sup; > E[Z;(t)] and R(t) = lim,—,c0 Ra(t). Then

R, (t) < el /t r(Rn_1(s))ds = R(t) < el®l* /t r(R(s))ds = R(t) = 0,

and so

lim E[|Y;(t) - Ye()l) < _lim_E[Z;x(0)] = 0.

J,k—o0

With some additional work, we show

lim E[ sup |Y;(s) — Yi(s)|| = 0.
J,k—o00 0<s<t

Then {Yy(¢t) : t > 0}, k =1,2,--- is a Cauchy sequence.
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