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Summary

I Stochastic non linear dynamics with small noise (X ε
t )

I AND starting at ε near zero (zero is absorbing state)

I By classical result (Kurtz, Freidlin-Wentzell) approximation on
a finite time interval [0,T ] is the deterministic function, solves
ODE, which starts at zero. Hence it is zero for all times

I Take Tε →∞ (c log(1/ε)).
Then X ε

Tε+t converges to the fluid limit but with a new initial
condition

I The initial condition is of the form H(W ), where
H(x) is a function obtained from the deterministic equation
W is a random variable arising in the linear stochastic
approximation
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Figure : Fluid approximation
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dX ε
t = f (X ε

t )dt +
√
εσ(X ε

t )dBt , t ≥ 0 (1)

where f , σ are twice continuously differentiable functions with
bounded second derivatives.
f (0) = σ(0) = 0, and f ′(0) > 0 and σ′(0) > 0, which makes zero
an unstable fixed point of (1) as well as of the ode obtained by
removing the stochastic perturbation

dxt
dt

= f (xt), t ≥ 0. (2)

σ(·) is assumed to be bounded and f (·) satisfies the following drift
condition:

(y − x)
(
f (y)− f (x)

)
≤ f ′(0)(y − x)2, x , y ≥ 0. (3)
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Smoothness of the coefficients and the drift condition (3) are
sufficient for existence of the unique strong solution of (1) for any
initial point X ε

0 > 0.
Similarly the deterministic equation (2) admits unique continuous
solution subject to any x0 ≥ 0.
A classical result e.g. Freidlin and Wentzell: the effect of noise on
any fixed time interval [0,T ] is negligible as ε→ 0.

Theorem
Let X ε

t satisfy (1) and X ε
0

P−−−→
ε→0

x0 ≥ 0, then for any T

sup
t≤T
|X ε

t − xt |
P−−−→
ε→0

0,

where xt is the solution of (2) subject to the initial condition x0.
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Since zero is a fixed point of the deterministic dynamics (2), this
theorem implies that the solution of (1), started from a small
positive initial condition X ε

0 = ε > 0, converges to zero on any
fixed bounded interval

sup
t≤T

∣∣X ε
t

∣∣ P−−−→
ε→0

0, ∀T ≥ 0.

On the other hand, since the fixed point is unstable and the initial
condition is nonzero, with positive probability, the trajectory X ε

t is
pushed out of the vicinity of the origin and, after sufficiently large
period of time, may reach a significant magnitude.
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Theorem

Let X ε
0 = ε > 0 and define Tε :=

1

f ′(0)
log

1

ε
. Then for any T > 0,

sup
t∈[0,T ]

∣∣X ε
Tε+t − xt

∣∣ P−−−→
ε→0

0, (4)

where xt is the solution of (2) subject x0 = H(W ).

H(x) = lim
t→∞

φt
(
xe−f

′(0)t
)
, x ≥ 0, (5)

where φt(x) is the flow of (2).

W := lim
t→∞

e−f
′(0)tYt ,

Yt = 1 +

∫ t

0
f ′(0)Ysds +

∫ t

0

√
σ′(0)YsdBs . (6)
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I W has the compound Poisson distribution with rate 2a and
exponentially distributed jumps with mean 1/(2a).

I P(x0 = 0) = P(W = 0) = e−2a > 0.
This corresponds to the event on which the process X ε

t is
absorbed at zero in a finite time. On the event {W > 0}, the
trajectories converge to a nontrivial curve, whose initial point
is random.

I This type of randomness was observed in biological models of
sweeps ( G. Martin and A. Lambert. Theor. Popul. Biol.
2015. A simple, semi-deterministic approximation to the
distribution of selective sweeps in large populations).
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Wright-Fisher model with selection

dX ε
t = aX ε

t (1− X ε
t )dt +

√
ε
√

X ε
t (1− X ε

t )dBt , (7)

f (x) = ax(1− x) and σ(x) = x(1− x).
The flow of x ′t = axt(1− xt) is

φt(x) =
xeat

1− x + xeat
,

it follows that

H(x) = lim
t→∞

φt(xe−at) =
x

1 + x
.

Hence the random initial condition is given by

x0 =
W

W + 1
.
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Balancing selection model

dX ε
t = aX ε

t (1− X ε
t )(1− 2X ε

t )dt +
√
ε
√

X ε
t (1− X ε

t )dBt ,

The fluid limit is given by x ′t = axt(1− xt)(1− 2xt), t ≥ 0,
which generates the flow

φt(x) =
1

2
− 1

2

1− 2x√
4x(1− x)(eat − 1) + 1

, x ∈ (0, 12).

H(x) = lim
t→∞

φt(xe−at) =
1

2
− 1

2

1√
4x + 1

.

Hence the random initial condition

x0 =
1

2
− 1

2

1√
4W + 1

.
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Without loss of generality we fix the normalization σ′(0) = 1 and
denote a := f ′(0) > 0. The main step in the proof is to establish
convergence (4) at t = 0

X ε
Tε

P−−−→
ε→0

H(W ). (8)

The rest of the proof follows by a change of time. Indeed, by
letting X̃ ε

t = X ε
Tε+t ,

and B̃t = BTε+t − BTε we obtain from (1)

X̃ ε
t = X̃ ε

0 +

∫ t

0
f (X̃ ε

s )ds +

∫ t

0

√
εσ(X̃ ε

s )dB̃s ,

and the result follows from (8) by Theorem 1.
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The proof consists of a number of steps.

I A nontrivial limit H(x) = limt→∞ φt(xe−at) exists if 1
f (x) −

1
ax

is integrable at zero, with convergence uniform on compacts.

I We take Feller branching diffusion

Yt = 1 +

∫ t

0
aYsds +

∫ t

0

√
Y sdBs , t ≥ 0, (9)

driven by the same Brownian motion as in (1).

Wt := e−atYt →t→∞ W := 1 +

∫ ∞
0

e−as
√

YsdBs .

Laplace transform of Yt is known, hence of W .
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Let tc =
c

a
log

1

ε
with c ∈ (1/2, 1) and t1 = Tε =

1

a
log

1

ε
.

I Let X̂ ε
t := ε−1X ε

t . Then (Yamada-Watanabe type
approximation)

X̂ ε
t

L1−−−→
ε→0

Yt , ∀ t ≥ 0.

I W ε
tc = e−atc X̂ ε

tc →W as ε→ 0 in L1.
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I X ε
tc = W ε

tc e−a(t1−tc ). Hence

φtc ,t1(X ε
tc ) = φtc ,t1

(
W ε

tc e−a(t1−tc )
)

= φt1−tc
(
W ε

tc e−a(t1−tc )
)
→ H(W ).

I Φs,t(x) flow of the sde (1)

Φtc ,t1(X ε
tc )− φtc ,t1(X ε

tc )
L2−−−→
ε→0

0.

I It now follows

X ε
Tε = X ε

t1 = Φtc ,t1(X ε
tc )→ H(W ).
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Fluid limits with random initial conditions.

A note on Euler approximations for SDEs with Hölder
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Birth-Death processes

Birth-Death process ZK = (ZK
t ; t ≥ 0) on Z+ with per capita

rates:

λK (z) := λ− (λ− µ)g1(z/K ) (birth)

µK (z) := µ+ (λ− µ)g2(z/K ) (death)

I The “linear” part: λ > µ ≥ 0 are real constants

I The “nonlinear” part: g1(0) = g2(0) = 0, continuous,
increasing, g = g1 + g2

I Carrying capacity: K � 1 is a large parameter
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A nonstandard fluid limit: the ingredients

I K -dependent time shift

t(K ) :=
1

λ− µ
log K

I the martingale limit of the linear branching Yt with rates λ
and µ

W = lim
t→∞

e−(λ−µ)tYt ,

which has exponential distribution with an atom at zero:

P(W = 0) =
µ

λ

P(W > t) =
(

1− µ

λ

)
e−(1−

µ
λ
)t , t ∈ [0,∞)
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Theorem (Barbour, Chigansky, K. 2016)

For a fixed integer Z0 = z ∈ N, the density process Z
K
t = ZK

t /K
satisfies

sup
t∈[0,T ]

∣∣∣ZK
t(K)+t − xt

∣∣∣ P−−−−→
K→∞

0

where xt is the solution of the ODE

ẋt = (λ− µ)xt
(
1− g(xt)

)
dt, t ∈ [0,T ]

subject to the random initial condition

x0 := H
(

W1 + ...+ Wz︸ ︷︷ ︸
i.i.d. copies of W

)
.
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On the same probability space, construct the coupled processes

I ZK is the original process

I Y K is the linear branching with per capita rates λ and µ

I UK is the ”faster” linear branching with ”frozen” per capita
rates

λ+ (λ− µ)g1(K η+c/K ) and µ− (λ− µ)g2(K η+c/K )

I V K is the ”slower” linear branching with ”frozen” per capita
rates

λ− (λ− µ)g1(K η+c/K ) and µ+ (λ− µ)g2(K η+c/K )

V K
t ≤ Y K

t ≤ UK
t ,∀t V K

t ≤ ZK
t ≤ UK

t till ZK hits the level K η+c
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Thank You


