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Summary

» Stochastic non linear dynamics with small noise (X;)
» AND starting at £ near zero (zero is absorbing state)

» By classical result (Kurtz, Freidlin-Wentzell) approximation on
a finite time interval [0, T] is the deterministic function, solves
ODE, which starts at zero. Hence it is zero for all times

» Take T. — oo (clog(1/e)).

Then X%, converges to the fluid limit but with a new initial
condition

» The initial condition is of the form H(W), where
H(x) is a function obtained from the deterministic equation
W is a random variable arising in the linear stochastic
approximation
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dX§ = f(X{)dt + \/eo(XF)dB:, t>0 (1)

where f, o are twice continuously differentiable functions with
bounded second derivatives.

f(0) = 0(0) =0, and '(0) > 0 and ¢’(0) > 0, which makes zero
an unstable fixed point of (1) as well as of the ode obtained by
removing the stochastic perturbation

dx
th =f(x), t>0. (2)

o(+) is assumed to be bounded and f(-) satisfies the following drift
condition:

(y = x)(f(y) — f(x)) < F(0)(y —x)*>, x,y=0.  (3)
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Smoothness of the coefficients and the drift condition (3) are
sufficient for existence of the unique strong solution of (1) for any
initial point X5 > 0.

Similarly the deterministic equation (2) admits unique continuous
solution subject to any xg > 0.

A classical result e.g. Freidlin and Wentzell: the effect of noise on
any fixed time interval [0, T] is negligible as ¢ — 0.

Theorem
Let X{ satisfy (1) and X§ —P—0—> xo > 0, then for any T
E—

P
sup |th: - Xt| 05
t<T e—0

where x; is the solution of (2) subject to the initial condition x.
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Since zero is a fixed point of the deterministic dynamics (2), this
theorem implies that the solution of (1), started from a small
positive initial condition X5 = ¢ > 0, converges to zero on any
fixed bounded interval

sup |X{| =0, VT >0,
tST e—0

On the other hand, since the fixed point is unstable and the initial
condition is nonzero, with positive probability, the trajectory X; is
pushed out of the vicinity of the origin and, after sufficiently large
period of time, may reach a significant magnitude.
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Theorem 1 1
Let X5 =€ > 0 and define T := W log - Then forany T > 0,
e P
o e 25 “

where x; is the solution of (2) subject xo = H(W).
- —£'(0
H(x) = lim_ ¢ (xe @5 x>0, (5)
where ¢¢(x) is the flow of (2).

W .= lim e_f/(o)th,

t—o0

Yo =1+ / " F1(0) Yads + / " /o (0)YodB.. (6)
0 0
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» W has the compound Poisson distribution with rate 2a and
exponentially distributed jumps with mean 1/(2a).

» P(xo=0)=P(W =0)=e"22>0.
This corresponds to the event on which the process X is
absorbed at zero in a finite time. On the event {W > 0}, the
trajectories converge to a nontrivial curve, whose initial point
is random.

» This type of randomness was observed in biological models of
sweeps ( G. Martin and A. Lambert. Theor. Popul. Biol.
2015. A simple, semi-deterministic approximation to the
distribution of selective sweeps in large populations).
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Wright-Fisher model with selection

dX; = aX; (1 — X{)dt + e/ XE(1 — X£)dB, (7)
f(x) = ax(1 — x) and o(x) = x(1 — x).
The flow of x{ = ax¢(1 — x¢) is

Xeat
P = T e
it follows that
H(x) = | e
() = Jim ou(re ) = =

Hence the random initial condition is given by

w
W+1

X0 =
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Balancing selection model

dXf = aXE(1 — XE)(1 — 2XE)dt + e/ X5 (1 — X§)dBe,

The fluid limit is given by x{ = ax;(1 — x¢)(1 — 2x¢), t >0,
which generates the flow

_ 1 B 1 1-—2x 1
o) =572 Vaix(1—x)(et —1) +1’ (©.2)
1 1 1
Hx) = fim oxe™™) =5 — 5ot

Hence the random initial condition
1 1 1
2 2 /AW +1

X0 =
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Without loss of generality we fix the normalization ¢/(0) =1 and
denote a := f’(0) > 0. The main step in the proof is to establish
convergence (4) at t =0

X5, 2 H(W). (8)

e—0
The rest of the proof follows by a change of time. Indeed, by

H g __ £
letting X; = X7,

and Et = Bt.4+ — BT, we obtain from (1)

X§=X5+/ f(x_f)ds+/ \ o (Xg)dBs,
0 0

and the result follows from (8) by Theorem 1.
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The proof consists of a number of steps.

» A nontrivial limit H(x) = lim;_,oo ¢¢(xe™?) exists if ﬁ -1

is integrable at zero, with convergence uniform on compacts.

» We take Feller branching diffusion
t t
Y, = 1+/ asts+/ VYsdBs, t>0, (9)
0 0
driven by the same Brownian motion as in (1).

Wt = e_ath —t—00 w:.=1 +/ e_as\/VSdBS'
0

Laplace transform of Y} is known, hence of W.
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1
Let t. = < log = with c € (1/2,1) and t; = T. = = log
a € a

1

g

> Let X := e 1XE. Then (Yamada-Watanabe type
approximation)

A 1
Xs Loy, vt>o.
e—0

» Wi =e X, - Wase—0in L
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X: = che_"(tl_tc) Hence

¢tc,t1(

> &, 4(x) flow of the sde (1)

) d)tc,tl(Wtie_a(tl_tC))

= dp—r. (WEe 2171} — H(W)

¢t‘C7t1(

» [t now follows

g __ (3
X7 =X,

r) ~

Pt (X2) —> 0.

i (X)) = H(W)
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Birth-Death processes

Birth-Death process ZK = (Z/;t > 0) on Z with per capita
rates:

Ak(z) = A= (A= p)g(z/K) (birth)
1k (2) = p+ (A= p)g(z/K)

(death)
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Birth-Death processes

Birth-Death process ZX =
rates:

Ak (2
pi(z

V\_/

— (A= w)a(z/K) (birth)
+ (A = n)ea(z/K)

(death)
> The “li

linear” part: A > p > 0 are real constants

(ZK;t > 0) on Z, with per capita
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Birth-Death processes

Birth-Death process ZK = (Z/;t > 0) on Z with per capita
rates:

Ak (2
pi(z

— (A= w)ai(z/K) (birth)
+ (A = n)ex(z/K) (death)

V\_/

> The “linear” part: A > u > 0 are real constants

» The "nonlinear” part: g1(0) = g2(0) = 0, continuous,
increasing, g = g1 + &
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Birth-Death processes

Birth-Death process ZX = (Z/S;t > 0) on Z with per capita
rates:

Ak(2) = A = (A — n)gr(z/K) (birth)
i (z) == p+ (A = p)ga(z/K) (death)

> The “linear” part: A > u > 0 are real constants

» The "nonlinear” part: g1(0) = g2(0) = 0, continuous,
increasing, g = g1 + &

» Carrying capacity: K > 1 is a large parameter
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A nonstandard fluid limit: the ingredients

> K-dependent time shift

t(K) =

log K
- p
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A nonstandard fluid limit: the ingredients

> K-dependent time shift

1
t(K) = )\_MlogK

> the martingale limit of the linear branching Y; with rates A
and u

W= lim e~ -1ty
t—o00

which has exponential distribution with an atom at zero:
P(W =0) =

X
W>t)—< >e =8t e 0,00)
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Theorem (Barbour, Chigansky, K. 2016)
For a fixed integer Zy = z € N, the density process Zy = ZK /K
satisfies

P
— 0
K—o00

SK
sup ‘Zt(K)—f—t — Xt
te[0,T]

where x; is the solution of the ODE

subject to the random initial condition

X0 = H( Wi+ ... + Wz).
—_——
i.i.d. copies of W
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On the same probability space, construct the coupled processes



Fluid limits with random initial conditions.

On the same probability space, construct the coupled processes
» ZK is the original process
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On the same probability space, construct the coupled processes
» ZK is the original process

» YK is the linear branching with per capita rates A and
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On the same probability space, construct the coupled processes

» ZK is the original process
» YK is the linear branching with per capita rates A and

» UK is the "faster” linear branching with " frozen" per capita
rates

A+ (A= p)g(K™¢/K) and  p— (X~ p)ga(K"/K)
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On the same probability space, construct the coupled processes

» ZK is the original process
» YK is the linear branching with per capita rates A and

» UK is the "faster” linear branching with " frozen” per capita
rates

A+ (A= p)gn(KT/K) and o — (A — p)g2(K"/K)

» VK is the "slower” linear branching with "frozen" per capita
rates

A= (A= p)e(KT/K) and g+ (A — p)ga(K"/K)

vE < vK < UK vt vE <ZK < UK till ZK hits the level Kt€
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On the same probability space, construct the coupled processes

» ZK is the original process
» YK is the linear branching with per capita rates A and

» UK is the "faster” linear branching with " frozen” per capita
rates

A (A= pw)g(K™/K) and  p— (A= p)g2(K"¢/K)

» VK is the "slower” linear branching with "frozen" per capita
rates

)\—()\—,u)gl(KU""C/K) and ,u+()\—,u)g2(K”+C/K)

vE < vK < UK vt vE <ZK < UK till ZK hits the level Kt€
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Thank You




