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Outline

• Deterministic model of secondary tumors and incomplete 
gamma functions

• Will tumors explode? Or, how to model truly stochastic 
population processes?

• Goldie-Coldman with a twist, or thoughtless mutations and 
experimental math of heavy tails



Extremely high genetic diversity in a single tumor 

points to prevalence of non-Darwinian cell evolution

Ling et al. PNAS (2015)

• The prevailing view that the evolution of cells in a tumor is driven by 
Darwinian selection has never been rigorously tested.

• Because selection greatly affects the level of intra-tumor genetic diversity 
with profound consequences for treatment outcomes, it is important to 
assess whether intra-tumor evolution follows the Darwinian or the non-
Darwinian mode of evolution.

• To provide statistical power, many regions in a single tumor need to be 
sampled.

• From a hepatocellular carcinoma (HCC) tumor, multiregional samples 
from the tumor were evaluated, using either whole-exome sequencing 
(WES) (n=23 samples) or genotyping (n=286).



Map of the mutation clones of HCC-15. 

Shaoping Ling et al. PNAS 2015;112:E6496-E6505
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Tumor field model

Primary
𝒈(𝒙) = 𝒃𝒙

Secondary 1
𝒈(𝒙) = 𝒂𝟏𝒙

Sec. 2
𝒈(𝒙) = 𝒂𝟐𝒙

Sec. 3
𝒈(𝒙) = 𝒂𝟑𝒙

Wide distribution of growth rates 𝑎𝑖



Hypotheses of the model

• A primary tumor is generated from a single cell at time 𝑡 = 0 and grows at rate 
𝑔(𝑥), where 𝑥 denotes the number of cells in the tumor.

𝑔(𝑥) = 𝑏𝑥

• The growing tumor emits transformed single cells at rate (x).

(𝑥) = 𝑚𝑥

• Each transformed cell develops into a new tumor, which grows at a generally 
different rate 𝑔(𝑥) and emits new transformed cells just as the primary does.

𝑔(𝑥) = 𝑎𝑥

• Growth rate of secondary tumors is a random variable with exponential 
distribution 

𝑎 ~ exp(𝜆)



Solving the PDE (v. Foerster type) and randomizing the 
growth rate we obtain the total count of secondary foci

where 

is the incomplete Gamma function, which behaves as 
- log(w), as w  0
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Analytical solution (red) explodes in finite time

Simulated trajectories grow faster than exponential
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Fig 2. The standard theory: Primary tumour and metastatic burden dynamics fitting.

Baratchart E, Benzekry S, Bikfalvi A, Colin T, Cooley LS, et al. (2015) Computational Modelling of Metastasis Development in Renal 

Cell Carcinoma. PLOS Computational Biology 11(11): e1004626. https://doi.org/10.1371/journal.pcbi.1004626

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626


Some comments

• Ling et al. Model captures some essentials but it is only quasi-
stochastic

• Does a truly stochastic model display the same expected-
value behavior?

– Let us try a toy model

– We can then try to build a Ling et al. - like branching-
process model



Toy model
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Secondary tumors grow exponentially at rate a, which itself is a 
random variable

It now has Pareto tail

…. which can be integrated to get the expectation

Success ! But what about the  ? Will tumors really explode ?!



Let us simulate growth with random rates

• Blue dots are averages of 1000 
simulations with the same rate

• Red line is expected value

Averages grow faster than 
exponential, but do not explode.

Theoretical expectation does

Conclusion:

Expected value is not useful as the 
central tendency of growth after 
certain time.

Inference from deterministic model 
is inaccurate (really ?)
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But we forgot the medians ….

By definition:

So 

and  it is well-matched by its sample counterpart
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Median is a good model in this case
[Have you heard of anybody using medians to model?]
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Can we reproduce such behavior in 
a truly stochastic model 
that is not “toy” but still simple?



Coldman-Goldie model with a twist

a

a a

a
T ~ exp(a)

a’

a
T ~ exp(a)

a’ ~ exp()

w.p. (1-) w.p. 

• Cells are organized in proliferating clones characterized by division rates a

• At each division, with probability , one cell mutates and assumes random division 
rate a’ ~ exp()

• This means that mutant clones arising may be frequently quite sluggish 
(depending on ) but sometimes very fast (“passengers” or “drivers”)

• Resulting model is a continuum-type time-continuous Markov branching process

• An ODE can be written for the pgf of the distribution of total cell count in all clones



Coldman-Goldie model with a twist

a

a a

a
T ~ exp(a)

a’

a
T ~ exp(a)

a’ ~ exp()

w.p. (1-) w.p. 
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We can solve the Riccati equation!

Only to see that …

pgf Φ(𝑠, 𝑡; 𝜆) satisfies 

a really hairy integral equation …
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However …

Expected value 
equations …

have solutions 
expressed
as series of 
convolution 
powers ...
And they explode 
at finite times …

Also a scaling 
property …



Variability of simulated stochastic trajectories

Trajectories ranked 1-10 and 51-60 out of 104 simulated 

Parameter values: μ = 0.5, a = 0.01, and λ = 10
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𝜑 𝑡 = E 𝑋 𝑡 𝑎 ~ 𝑒𝑥𝑝(𝜆)]

Avg[𝑋𝑖(𝑡)]
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Tails of the distributions of cell counts 𝑋(𝑡, 𝑎)

seem to obey a power law, 

with exponent estimated close to -1 at the time when the 𝐸[𝑋(𝑡)] explodes
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Some math …

Let 𝑋𝑘(𝑎, 𝑡) be the number of cells generated by 𝑘 − 1 mutations

𝑋1(𝑎, 𝑡) denotes the number of primary cells (division rate 𝑎)

𝑋2(𝑎, 𝑡) denotes the number of cells that directly mutated from primary cells

𝑋3(𝑎, 𝑡) …

𝑋4(𝑎, 𝑡) …

…



Primary cells follow Yule’s binary fission model

𝑋1 𝑎, 𝑡 ~ 𝐹1 𝑠, 𝑎, 𝑡 =
𝑠𝑒−𝑎 1−𝜇 𝑡

1 − 𝑠(1 − 𝑒−𝑎 1−𝜇 𝑡)

If we integrate over 𝑎 ~ exp(𝜆), we obtain Yule-Simon distribution for 𝑋1 𝑡

P 𝑋1 𝑡 = 𝑛 = 𝜈B(𝜈 + 1, 𝑛)

with 𝜈 𝑡 =
𝜆

1−𝜇 𝑡
. 

For large 𝑛

P 𝑋1 𝑡 > 𝑛 ~
Γ(𝜈+1)

𝑛𝜈

with

𝐸 𝑋1 𝑡 = ቐ

𝜈

𝜈 − 1
; 𝜈 > 1

∞; 𝜈 ≤ 1

As in the toy model and simulations.



Another partial result for 𝑘 = 2, 3, …

P 𝑋𝑘 𝑎, 𝑡 > 𝑛 > 𝐶𝑎
𝜇(1 − 𝜇)2𝑡2

𝜆2ln 𝑛

𝑘−1

𝑛−𝜈 , 𝑛 → ∞

suggests that 

- The power law exponent is the same for  all tumor cells

- But, the growth rate is penalized by (ln 𝑛)1−𝑘

- Eventually, for large times, 𝑋𝑘 𝑎, 𝑡 with large 𝑘 will eventually dominate



Cell-death and Criticality

Suppose that each of the progeny cells may die with probability 𝑑.

Then expectation 𝜑(𝜆, 𝑡) explodes at 𝑡 = 𝜆/𝑐 , 

where

𝑐 = (2 – 𝜇)(1 – 𝑑) − 1, 

Time at explosion is becoming infinite if

𝑐 = 0 ֞ 𝑑 = 𝑑∗ =
1 – 𝜇

2 – 𝜇
< 0.5

At 𝑐 = 0, expectation 𝜑(𝑡) = 𝜑(0) exp
𝜇𝑡

𝜆 2 – 𝜇
.

For 𝑑 ∈ [0, 𝑑∗] solutions do not explode. Nothing special at 𝑑 = 0.5?



Conclusions

• Mechanisms of growth and mutation of malignant cell clones 
in tumors are gradually uncovered due to technological 
revolution in biology

• Secondary tumors display highly variable growth rates

• Understanding differences between stochastic processes and 
their central tendency characteristics helps understand new 
data.

• Truncating the distribution of division rates eliminates literal 
explosions but tails can be quite long.





What has happenned

• Ling et al (2015) is a comprehensive treatment of several aspects 
of secondary tumors, using for example Durrett (2013) 
generalization of the Ewens sampling formula for growing 
populations, based among other on Polanski and Kimmel (2003).

• They also formulated a mathematical model of the primary 
tumor shedding secondary foci and used it to conclude about the 
distribution of the sizes of secondary foci in HCC.

• We solved the model equations based on the methods reported 
by Iwata (2000) and showed that the rigorous solution is 
different from Ling et al. (2015) (and later Tao et al. (2015)) 
intuitive solution. 



Time evolution of the size distribution 
of secondary tumors
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Transport equation v. Förster
type with nonlocal boundary 
conditions,
Diekmann, Webb,  and others 
ca. 1980



Equations of the model

Dynamics of the secondary cell colony size distribution density is 
described by the following von Förster-type equation:

with nonlocal boundary conditions
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Solution in the “selective randomized” case
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• In this case 
– the primary tumor grows at rate bxp

– each new secondary originating from the primary grows at a different 
rate, sampled from the exponential distribution with parameter 

– Secondaries originating from other secondaries grow at unchanged 
rates

• Substitution of the expression for G(x;a,b) leads to 
intractable integrals …



Assumptions a bit unrealistic?
So …  Try a model with expected lifetimes of mutants ≥ 1/A

How do expectations, averages and quantiles depend on A?



A = 5



A = 10



A = 20



A = 50



A = 100


