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Outline

 Deterministic model of secondary tumors and incomplete
gamma functions

* Will tumors explode? Or, how to model truly stochastic
population processes?

* Goldie-Coldman with a twist, or thoughtless mutations and
experimental math of heavy tails



Extremely high genetic diversity in a single tumor
points to prevalence of non-Darwinian cell evolution
Ling et al. PNAS (2015)

e The prevailing view that the evolution of cells in a tumor is driven by
Darwinian selection has never been rigorously tested.

* Because selection greatly affects the level of intra-tumor genetic diversity
with profound consequences for treatment outcomes, it is important to
assess whether intra-tumor evolution follows the Darwinian or the non-
Darwinian mode of evolution.

* To provide statistical power, many regions in a single tumor need to be
sampled.

* From a hepatocellular carcinoma (HCC) tumor, multiregional samples
from the tumor were evaluated, using either whole-exome sequencing
(WES) (n=23 samples) or genotyping (n=286).



Map of the mutation clones of HCC-15.

Shaoping Ling et al. PNAS 2015;112:E6496-E6505
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Tumor field model

Wide distribution of growth rates a;



Hypotheses of the model

A primary tumor is generated from a single cell at time t = 0 and grows at rate
g(x), where x denotes the number of cells in the tumor.

g(x) = bx
The growing tumor emits transformed single cells at rate (x).

B(x) = mx“

Each transformed cell develops into a new tumor, which grows at a generally
different rate g(x) and emits new transformed cells just as the primary does.

g(x) = ax

Growth rate of secondary tumors is a random variable with exponential
distribution

a ~ exp(4)



Solving the PDE (v. Foerster type) and randomizing the
growth rate we obtain the total count of secondary foci
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is the incomplete Gamma function, which behaves as
- log(w), asw 10



Analytical solution (red) explodes in finite time

Simulated trajectories grow faster than exponential
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Fig 2. The standard theory: Primary tumour and metastatic burden dynamics fitting.
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Some comments

Ling et al. Model captures some essentials but it is only quasi-
stochastic

Does a truly stochastic model display the same expected-
value behavior?

— Let us try a toy model

— We can then try to build a Ling et al. - like branching-
process model



Toy model

Secondary tumors grow exponentially at rate a, which itself is a

random variable
X(t|a)=exp(at), t>0, a-~exp(l)

It now has Pareto tail

Pr[X (t) > x] = Lo O=x<i, t>0
[X(t) >X]= -1 v>1 >0,

.... which can be integrated to get the expectation

o0

E[X(t)] = j: PrIX (t) > x]dx =1+ jl “x My = {

Success ! But what about the 00 ? Will tumors really explode ?!

A(A-1),

t< A,
t> A,



Let us simulate growth with random rates

* Blue dots are averages of 1000 1000 -
simulations with the same rate

* Red line is expected value

Averages grow faster than S
exponential, but do not explode. 100 - : e
Theoretical expectation does

Conclusion:

10 -
Expected value is not useful as the

central tendency of growth after
certain time.

Inference from deterministic model .
is inaccurate (really ?) 0 02 04 06
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But we forgot the medians ....

By definition:

Pr[X (t) > Median{X (t)}] = %

So
Median{X (t)}= 2"

and it is well-matched by its sample counterpart
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Median is a good model in this case
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Can we reproduce such behavior in
a truly stochastic model
that is not “toy” but still simple?

Tumor field model

Map of the mutation clones of HCC-15.
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Wide distribution of growth rates g;




Coldman-Goldie model with a twist

a’ ~exp(\)
@ T ~ exp(a) @ @ T ~ exp(a)
@ @

w.p. (1-n) w.p.

Cells are organized in proliferating clones characterized by division rates a

At each division, with probability 1, one cell mutates and assumes random division
rate a’ ~ exp(\)

This means that mutant clones arising may be frequently quite sluggish
(depending on A) but sometimes very fast (“passengers” or “drivers”)

Resulting model is a continuum-type time-continuous Markov branching process

An ODE can be written for the pgf of the distribution of total cell count in all clones



Coldman-Goldie model with a twist

a’ ~exp(A)
@ T ~ exp(a) @ @ T ~ exp(a)
@ @

w.p. (1-n) w.p.

X (a,t) = #{cellsin process started by cell of type a}
F(s;a,t) = E(s*®"), s [0]]

oF (z;ta’t) —_aF(s;a,t)+a[(l— u)F(s;at)’ + 4F (5;a,)D(s; 4,1)],t 2 0,a> 0

D(s: A1) = jo‘” F(s;a',t)- Aexp(—ia')dA

F(s;a,0)=s



We can solve the Riccati equation!

Only to see that ...

pgf ®(s,t; 1) satisfies
a really hairy integral equation ...
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However ...

Expected value
equations ...

have solutions
expressed

as series of
convolution
POWErS ...

And they explode
at finite times ...

Also a scaling
property ...

oF (s;a,t)
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Variability of simulated stochastic trajectories

Trajectories ranked 1-10 and 51-60 out of 10* simulated
Parameter values: u=0.5,a=0.01,and A =10

1000 \
X (a,t) = #{cellsin process started by cell of type a
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Tails of the distributions of cell counts X(t, a)

seem to obey a power law,

with exponent estimated close to -1 at the time when the E[X(t)] explodes
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Some math ...

Let X, (a, t) be the number of cells generated by k — 1 mutations

X1 (a, t) denotes the number of primary cells (division rate a)

X, (a, t) denotes the number of cells that directly mutated from primary cells
X3(a,t) ..

Xi(a,t) ..



Primary cells follow Yule’s binary fission model

Se—a(l—u)t

1 —s(1 — e~a-pit)

X{(a,t) ~Fi(s,a,t) =

If we integrate over a ~ exp(A), we obtain Yule-Simon distribution for X, (t)

P[X,(t) =n]=vB(v+1,n)

: 2
with v(t) = TEmT
For large n
P[X,(6) > n] ~ =57

with

Y. > 1

EX,0]={v-1" "
0; v<1

)

As in the toy model and simulations.



Another partial result for k = 2, 3, ...

p( — w7t o n~v n — o
A%lnn '

P[X,(a,t) >n] > Ca{
suggests that
- The power law exponent is the same for all tumor cells
)1—k

- But, the growth rate is penalized by (Inn

- Eventually, for large times, X (a, t) with large k will eventually dominate



Cell-death and Criticality

Suppose that each of the progeny cells may die with probability d.
Then expectation @ (A, t) explodesatt = A1/c,

where

c=02-wd-d) -1,

Time at explosion is becoming infinite if

1

At ¢ = 0, expectation @(t) = @(0) exp (A(Zﬂ—tu))'

For d € [0, d*] solutions do not explode. Nothing special at d = 0.5?



Conclusions

Mechanisms of growth and mutation of malignant cell clones
in tumors are gradually uncovered due to technological
revolution in biology

Secondary tumors display highly variable growth rates

Understanding differences between stochastic processes and
their central tendency characteristics helps understand new
data.

Truncating the distribution of division rates eliminates literal
explosions but tails can be quite long.
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Overview

The g-bio Summer School is an annual event intended to advance
predictive modeling of cellular regulatory systems by exposing
participants to a survey of work in quantitative biology and by
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What has happenned

* Lingetal (2015) is a comprehensive treatment of several aspects
of secondary tumors, using for example Durrett (2013)
generalization of the Ewens sampling formula for growing
populations, based among other on Polanski and Kimmel (2003).

* They also formulated a mathematical model of the primary
tumor shedding secondary foci and used it to conclude about the
distribution of the sizes of secondary foci in HCC.

* We solved the model equations based on the methods reported
by Iwata (2000) and showed that the rigorous solution is

different from Ling et al. (2015) (and later Tao et al. (2015))
intuitive solution.
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Time evolution of the size distribution
of secondary tumors

N

Transport equation v. Forster
type with nonlocal boundary
conditions,

Diekmann, Webb, and others
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Equations of the model

Dynamics of the secondary cell colony size distribution density is
described by the following von Forster-type equation:

op(x,t)  olg(x)p(x, )] e [1 00) x[0. o0
o4 > =0, (x1)e[l,0)x[0,00)
p(x,0)=0

with nonlocal boundary conditions

9P = [ AP0 +A(X, (1), A(X) = mx"



Solution in the “selective randomized” case

* |n this case

— the primary tumor grows at rate bx?

— each new secondary originating from the primary grows at a different
rate, sampled from the exponential distribution with parameter A

— Secondaries originating from other secondaries grow at unchanged
rates

a~exp(l)

G(x;b) = jl :1 G(x:a,b)Aexp(-1a)da

* Substitution of the expression for G(x;a,b) leads to
intractable integrals ...



Assumptions a bit unrealistic?
So ... Try a model with expected lifetimes of mutants > 1/A

X (t|la) = exp(at), t >0, a ~exp(A; A)

.f[f_)\/t L e—)\A

PriX(t) > a] = v e[l e

1] — e A

pA(t=))

1— Nt

6_)\A(€At L l)

EIX(t)] = /UOC Pr[X(t) > 2lde =1+ (1 —e™)7!

How do expectations, averages and quantiles depend on A?
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