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Branching process in varying environment (BPVE).

Generalizes the Galton-Watson process (GWP),
in that the offspring distribution may change in a deterministic

fashion from one generation to the next: f1, fo,...

Studied by Agresti, Jagers, Lindvall, Biggins, De Souza, Lyons,
the Badajoz group, Bansaye, ...

Attained much less attention - in particular as a tool - than the
GWP, despite of its natural appearance
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Related processes:

Special case: Galton-Watson process: f1 = fo=--- = f.

Defective BPVE,
see Braunsteins & Hautphenne, K. & Minuesa

Branching processes in random environment: fi, fo,... make a
stationary (i.i.d.) sequence in the space of probability measures.
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THE OBSTACLE



Branching process in varying environment.

A sequence fq, fo,... of probability measures on Ny with weights
frnlyl, n>1, y > 0, is called a varying environment.
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Branching process in varying environment.

The process Z = (Zn),>0 is called a BPVE in the environment

f1, fo, ... if it allows the representation
Zn—l

Zn: Z Y:m
i=1

with independent Np-valued r.v. Y}, i,n > 1, also independent of
Zo, such that the Y, are copies of r.v. Y, with distributions fj,
1,n > 1.

That is,
P(Y;, =v) = falyl , y€Ng .

11



The result of MacPhee and Schuh (1983).

Let, as usual,

" E[Z)

Then the process (W5), >0 is @ non-negative martingale and con-
sequently there is a r.v. W such that as n — oo

W, — W a.s.
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The result of MacPhee and Schuh (1983).

Theorem. There are BPVES such that

P(Zxxc =0) < P(Wsx =0) .
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The result of MacPhee and Schuh (1983).

Theorem. There are BPVES such that

P(Zxxc =0) < P(Wsx =0) .

More precisely, for given m > 4 there is a BPVE (Zp),>0 Such
that

E[Z,] ~ am"

for some 0 < a < oo, whereas both events

mn
< o0

A .
O< Iim 2% <« and 0< lim 2%
n n—>00mn

n—0o0 D
have strictly positive probability.
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Idea of proof:

Set

P(Y, = k) =

1

for k =2
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Idea of proof:

Set

147" for k=2
P(Y,=k) = .
4—n for k=24 (m—2)4

Borel-Cantelli gives that the event

{Z, = 2" for all n}
has positive probability.
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Work of Agresti, Jagers, Biggins, De Souza, Lyons ...didn't
lead to a clear CLASSIFICATION of BPVE, as we appreciate it
in case of the GWP.
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Work of Agresti, Jagers, Biggins, De Souza, Lyons ...didn't
lead to a clear CLASSIFICATION of BPVE, as we appreciate it
in case of the GWP.

Russell Lyons remarks in his paper "Random walks, capacities
and percolation on trees” (AP, 1992)
"The pathologies ... are possible when the condition
sup || Ynl|lco < o0 a.s.
n

(that is uniformly bounded offspring numbers a.s.) is relaxed even
a slightest bit.”

18



Are BPRE useless for applications because of their unclear ap-
pearence?
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Are BPRE useless for applications because of their unclear ap-
pearence?

Or is there a condition, which

e applies for the overwhelming, generic portion of BPVES,

e climinates pathological behaviour,

e allows for a classification of BPVEs along the lines of GWPs?
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Are BPRE useless for applications because of their unclear ap-
pearence?

Or is there a condition, which

e applies for an overwhelming, generic portion of the BPVES,

e climinates pathological behaviour,

e allows for a classification of BPVEs along the lines of GWPs?

Yes, there is!
21



THE REGULARITY ASSUMPTIONS
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The regularity assumption (A)

dec<ooVn>1:

E[Y,2; Yn > 2] < ¢E[Yn; Y5 > 2] - E[Yn | Yy > 1] < o0
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The regularity assumption (A)
dec<ooVn>1:

E[Y,2; Yn > 2] < ¢E[Yn; Y5 > 2] - E[Yn | Yy > 1] < o0

A stronger uniformity assumption (B)

Ve >0 dee < oo Vn > 1

B|Y,2; Yy > c:(1+ E[Ya])| < cE[Y,7; Yn > 2

24



A still stronger, handy L3-assumption

A <ocoVn>1:

E[Y,(Yn — 1)(Yn — 2)] < E[Ya(Yn — 1)] (1 + E[Ya])
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A still stronger, handy L3-assumption

A < oo Vn>1:

E[Yn(Yn — 1)(Yn — 2)] < C/E[Yn(Yn — 1)] (1 + E[Yn])

Examples:
(i) Y, <c a.s. forall n> 1.

(ii) Poisson-variables Y;, with arbitrary parameters \,.

Gii) ...

26



THE RESULTS
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We proceed along the lines of Galton-Watson processes.
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Let for Z,

pn = E[Zp]
and for Y,
o E[Yn(Yy — 1)] _ Var[Y;]
T EM? 7T R
Also write

g . =P(Zsx =0)

for the probability of extinction.
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Theorem 1A: a.s. extinction. Assume (A). Then the following
conditions are equivalent:

(i) ¢ =1,

(i) E[Z,] = o(\/Var[Zn]) as n — oo,

(iii) i Pk — oo,

oo Vk

r—1 Mk—1

(iv) un — 0 and/or

— OO
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Agresti (1975), R. Lyons (1992)
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Theorem 1B: survival. Assume (A). Then the following condi-
tions are equivalent:

(v) ¢ <1,

(vi) \/Var[Z,] = O(E[Zy]) as n — oo,

— P
i) S <o,
r—1 Mk—1

©.@) l/k

=1 Hk—1

(viii) 30<r<oco:pun, —r and

< o0
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Recall

. Zn
W = Iim a.s.
n— 00 E[Zn]

Theorem 2: supercritical case. Assume (A). Then we have:

(i) IfFP(Zooc =0) =1, then W = 0 a.s.

(ii) If P(Z« = 0) < 1, then
E[Wx] =1
and
P(Wso =0) =P(Zsc =0) .
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D’'Souza, Biggins (1992), Goettge (1976)
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Theorem 3: subcritical case. Let (A) be satisfied and let g = 1.
T hen these conditions are equivalent:

(i) for alle > 0 thereis a ¢ < oo such that P(Z,, > c| Z, >0) <e¢
for all n > 0O,

(ii) there is a ¢ > 0 such that cu, < P(Z, > 0) < uy, for all n > 0,
or, what amounts to the same thing,

n>0

(iii) i Vi :()(i) as n — oo

r—1 Mk—1 Hn
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Theorem 4: critical case. Let (B) be satisfied and let ¢ = 1.

Assume that
1 mn
(S
Hn r—1 Mk—1

asn — oo. Then (“Kolmogorov's asymptotic”)

nooy, N\l
r—1 Mk—1
dS n — o0.
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Theorem 4: critical case. Let (B) be satisfied and let ¢ = 1.

Assume that
1 mn
=S
Hn r—1 Mk—1

asn — oo. Then (“Kolmogorov's asymptotic”)

nooy, N\l
r—1 Mk—1
dS n — o0.

Moreover (“Yaglom limit”), setting

_ Bn o~ Vg
an .= —

2 =1 k-1
then a, — oo and the distribution of Z,/a, conditioned on the
event Z,, > 0 converges to a standard exponential distribution.
37
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Jagers (1974), Bhattacharya, Perlman (2017)
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THE CLASSIFICATION
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Example: O < infpv, <suppv,. < oo for all £ > 1.

supercritical, if

critical, if

subcritical, if

@)

1
> — < oo (“at least linear growth™) .
k=0 Mk

50 n—1
Zi:oo and i=0<z:i> ;

=0 Mk Hn =0 Mk
1

n— 1 ]_
= o(_) (“at least exp. decay"”)
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@,

» . . o VL,
supercritical, if im_pn = oo and > < 00 ,
r—1 Mk—1
i 14
asy. degenerate, if O0< IIm up < oo and b < oo :
< v 1 LY
critical, if > F_ — ~ and —=0( > i ) ,
r—1 Mk—1 Hn p—1 Mk—1
n Vk 1
subcritical, if im p, =0 and > = O(—)
oo —1 ME—1 Hn
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THE APPROACH
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Let for a probability measure f on Ny with weights f[z]

©.@)

f(s) =) s°fl], 0<s<1

z=0
and p(s) given by
1 B 1
1—f(s) f(1)A-s)

+o(s), 0<s<1

Then, due to convexity,

©(s) >0 .
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Zn has the generating function

fO,n = fr0---0fn.
It follows
S ! + 01(f1.0(5))
L= fon(s) A= frals)) W 71"
and via iteration
1 B 1 " ok (fln(s))
1-— fO,n(S) B pn(1l — s) i kzzzl HEk—1 |
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Example: Critical Galton-Watson process

1 _ 1
1-— fO,n(S) 1-—

3 ()
k=1

1 n
=1
P(Zn>0) T kzl i

(P(Zk—|—1 o 0))

o(1-) =g

2

rvn

45



Lemma. Assume (1) < oo for a generating function f. Then
for0<s<1

p(s) < 2p(1-) .
Also

£(1)
U2 =5mme

(Geiger, K. (2001), Agresti (1975), )
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Lemma. Assume (1) < oo for a generating function f. Then
for0<s<1

~0(0) < ¢(s) < 20(1-) .
Also
_ )
U2 =5mme

(Geiger, K. (2001), Agresti (1975), K. (2016))
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Lemma. Assume (1) < oo for a generating function f. Then
for0<s<1

~0(0) < ¢(s) < 20(1-) .
Also
_ )
U2 =5mme

(Geiger, K. (2001), Agresti (1975), K. (2016))

Assumption (A) is a reformulation of the assumption

©n(0) > c1on(1-) .
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Sketch of proof:

Let m = ¢'(1).

m(l—s)—(1-f(s))
m(1 —s)(1—f(s))

p(s) =

0@

(=D + (y—2)s+ -+ 472

y=1

mo S FEA s+ 455D

z=1

IS neither increasing nor decreasing in general.
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Lemma. Let g1,g9> be probability measures on Ng such that

g92lyl _ 92[2]
g1lyl = g1l=]

for all y < z .

Also let o : Ng — R be a non-decreasing function. Then

@)

> aly)gily]l < > aly)galy] -

y=0 y=0
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Consider for 0 < s <1 and r € Ng the probability measures

s" Y
O<y<r.

gS[y]:l—I—S—I—"'—I—ST, —= -

We obtain that

> ygslyl =

y=0

ST_1+28T_2—|—"'—|-7“
l14+s+--- 4+ 35"

IS a decreasing function in s.

It follows for 0 < s <1

r—1
r <:7‘+-(r-— s+ -+ -
2 l+s+4+---+s" -
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Thus let

Z flyl(y — 1)(1—|—5-|_..._|_Sy—1)
P(s) 1= Y=2

if[z](1+s—|—..._|_sz—1)

z=1

Check that we may apply the lemma to g5, 0 < s < 1, given by
its weights

flyl(L4+s+---+ s
Zf[z](1+s—|—...+3z—1)

=1

gslyl :=

> 1.

Y Z

Thus 7 is increasing. O
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