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Götz Kersting

Goethe Universität, Frankfurt am Main

WBPA 2018, Badajoz,

April 10-13, 2018



Branching process in varying environment (BPVE).

Generalizes the Galton-Watson process (GWP),

in that the offspring distribution may change in a deterministic

fashion from one generation to the next: f1, f2, . . .

Studied by Agresti, Jagers, Lindvall, Biggins, De Souza, Lyons,

the Badajoz group, Bansaye, . . .

Attained much less attention - in particular as a tool - than the

GWP, despite of its natural appearance
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Related processes:

Special case: Galton-Watson process: f1 = f2 = · · · = f .

Defective BPVE,

see Braunsteins & Hautphenne, K. & Minuesa

Branching processes in random environment: f1, f2, . . . make a

stationary (i.i.d.) sequence in the space of probability measures.
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THE OBSTACLE
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Branching process in varying environment.

A sequence f1, f2, . . . of probability measures on N0 with weights

fn[y], n ≥ 1, y ≥ 0, is called a varying environment.
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Branching process in varying environment.

The process Z = (Zn)n≥0 is called a BPVE in the environment
f1, f2, . . . if it allows the representation

Zn =
Zn−1∑
i=1

Yin

with independent N0-valued r.v. Yin, i, n ≥ 1, also independent of
Z0, such that the Yin are copies of r.v. Yn with distributions fn,
i, n ≥ 1.

That is,

P(Yin = y) = fn[y] , y ∈ N0 .
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The result of MacPhee and Schuh (1983).

Let, as usual,

Wn :=
Zn

E[Zn]

Then the process (Wn)n≥0 is a non-negative martingale and con-

sequently there is a r.v. W∞ such that as n→∞

Wn →W∞ a.s.
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The result of MacPhee and Schuh (1983).

Theorem. There are BPVEs such that

P(Z∞ = 0) < P(W∞ = 0) .

More precisely, for given m > 4 there is a BPVE (Zn)n≥0 such

that

E[Zn] ∼ amn

for some 0 < a <∞, whereas both events

0 < lim
n→∞

Zn

2n
<∞ and 0 < lim

n→∞
Zn

mn
<∞

have strictly positive probability.
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Idea of proof:

Set

P(Yn = k) =


1− 4−n for k = 2

4−n for k = 2 + (m− 2)4
n
∣∣∣

Borel-Cantelli gives that the event

{Zn = 2n for all n}

has positive probability.
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Work of Agresti, Jagers, Biggins, De Souza, Lyons . . . didn’t

lead to a clear CLASSIFICATION of BPVE, as we appreciate it

in case of the GWP.

Russell Lyons remarks in his paper ”Random walks, capacities

and percolation on trees” (AP, 1992)

”The pathologies . . . are possible when the condition

sup
n
‖Yn‖∞ <∞ a.s.

(that is uniformly bounded offspring numbers a.s.) is relaxed even

a slightest bit.”
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Are BPRE useless for applications because of their unclear ap-

pearence?

Or is there a condition, which

• applies for an overwhelming, generic portion of the BPVEs,

• eliminates pathological behaviour,

• allows for a classification of BPVEs along the lines of GWPs?

Yes, there is!
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THE REGULARITY ASSUMPTIONS
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The regularity assumption (A)

∃ c <∞∀n ≥ 1 :

E[Y 2
n ;Yn ≥ 2] ≤ cE[Yn;Yn ≥ 2] · E[Yn | Yn ≥ 1] <∞

∣∣∣
.

A stronger uniformity assumption (B)

∀ε > 0 ∃cε <∞ ∀n ≥ 1 :

E
[
Y 2
n ;Yn > cε(1 + E[Yn])

]
≤ εE[Y 2

n ;Yn ≥ 2]

∣∣∣
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A still stronger, handy L3-assumption

∃c′ <∞ ∀n ≥ 1 :

E[Yn(Yn − 1)(Yn − 2)] ≤ c′E[Yn(Yn − 1)] (1 + E[Yn])

∣∣∣

Examples:

(i) Yn ≤ c′ a.s. for all n ≥ 1.

(ii) Poisson-variables Yn with arbitrary parameters λn.

(iii) . . .
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THE RESULTS
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We proceed along the lines of Galton-Watson processes.
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Let for Zn

µn := E[Zn]

and for Yn

νn :=
E[Yn(Yn − 1)]

E[Yn]2
, ρn :=

Var[Yn]

E[Yn]2
.

Also write

q := P(Z∞ = 0)

for the probability of extinction.
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Theorem 1A: a.s. extinction. Assume (A). Then the following
conditions are equivalent:

(i) q = 1,

(ii) E[Zn] = o
(√

Var[Zn]
)∣∣∣

as n→∞,

(iii)
∞∑
k=1

ρk
µk−1

=∞,

(iv) µn → 0 and/or
∞∑
k=1

νk
µk−1

=∞
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Agresti (1975), R. Lyons (1992)
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Theorem 1B: survival. Assume (A). Then the following condi-
tions are equivalent:

(v) q < 1,

(vi)
√
Var[Zn] = O(E[Zn])

∣∣∣∣
as n→∞,

(vii)
∞∑
k=1

ρk
µk−1

<∞,

(viii) ∃0 < r ≤ ∞ : µn → r and
∞∑
k=1

νk
µk−1

<∞
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Recall

W∞ := lim
n→∞

Zn

E[Zn]
a.s.

Theorem 2: supercritical case. Assume (A). Then we have:

(i) If P(Z∞ = 0) = 1, then W∞ = 0 a.s.

(ii) If P(Z∞ = 0) < 1, then

E[W∞] = 1

and

P(W∞ = 0) = P(Z∞ = 0) .
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D’Souza, Biggins (1992), Goettge (1976)
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Theorem 3: subcritical case. Let (A) be satisfied and let q = 1.
Then these conditions are equivalent:

(i) for all ε > 0 there is a c <∞ such that P(Zn > c | Zn > 0) ≤ ε
for all n ≥ 0,

(ii) there is a c > 0 such that cµn ≤ P(Zn > 0) ≤ µn for all n ≥ 0,
or, what amounts to the same thing,

sup
n≥0

E[Zn | Zn > 0] <∞ ,

(iii)
n∑

k=1

νk
µk−1

= O

(
1

µn

)
as n→∞
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Theorem 4: critical case. Let (B) be satisfied and let q = 1.
Assume that

1

µn
= o

( n∑
k=1

νk
µk−1

)
as n→∞. Then (“Kolmogorov’s asymptotic”)

P(Zn > 0) ∼ 2
( n∑
k=1

νk
µk−1

)−1

as n→∞.

Moreover (“Yaglom limit”), setting

an :=
µn

2

n∑
k=1

νk
µk−1

, n ≥ 1 ,

then an → ∞ and the distribution of Zn/an conditioned on the
event Zn > 0 converges to a standard exponential distribution.
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Jagers (1974), Bhattacharya, Perlman (2017)
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THE CLASSIFICATION
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Example: 0 < infk νk ≤ supk νk <∞ for all k ≥ 1.

supercritical, if
∞∑
k=0

1

µk
<∞ (“at least linear growth”) ,

critical, if
∞∑
k=0

1

µk
=∞ and

1

µn
= o

( n−1∑
k=0

1

µk

)∣∣∣∣
,

subcritical, if
n−1∑
k=0

1

µk
= O

(
1

µn

)∣∣∣∣
(“at least exp. decay”)
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supercritical, if lim
n→∞µn =∞ and

∞∑
k=1

νk
µk−1

<∞ ,

asy. degenerate, if 0 < lim
n→∞µn <∞ and

∞∑
k=1

νk
µk−1

<∞

∣∣∣∣
,

critical, if
∞∑
k=1

νk
µk−1

=∞ and
1

µn
= o

( n∑
k=1

νk
µk−1

)∣∣∣∣
,

subcritical, if lim
n→∞µn = 0 and

n∑
k=1

νk
µk−1

= O

(
1

µn

)∣∣∣∣
.
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THE APPROACH
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Let for a probability measure f on N0 with weights f [z]

f(s) :=
∞∑
z=0

szf [z] , 0 ≤ s ≤ 1

and ϕ(s) given by

1

1− f(s)
=

1

f ′(1)(1− s)
+ ϕ(s) , 0 ≤ s < 1

Then, due to convexity,

ϕ(s) ≥ 0 .
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Zn has the generating function

f0,n := f1 ◦ · · · ◦ fn .

It follows

1

1− f0,n(s)
=

1

f ′1(1)(1− f1,n(s))
+ ϕ1(f1,n(s))

and via iteration

1

1− f0,n(s)
=

1

µn(1− s)
+

n∑
k=1

ϕk(fk,n(s))

µk−1
.
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Example: Critical Galton-Watson process

1

1− f0,n(s)
=

1

1− s
+

n∑
k=1

ϕ(fk,n(s))

1

P(Zn > 0)
= 1 +

n∑
k=1

ϕ
(
P(Zk+1 = 0)

)

ϕ(1−) =
ν

2

P(Zn > 0) ∼
2

νn
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Lemma. Assume f ′′(1) < ∞ for a generating function f . Then

for 0 ≤ s < 1

1

2
ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1−) .

Also

ϕ(1−) =
f ′′(1)

2f ′(1)2
.

(Geiger, K. (2001), Agresti (1975), K. (2016) )

Assumption (A) is a reformulation of the assumption

ϕn(0) ≥ c1ϕn(1−) .
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Sketch of proof:

Let m = ϕ′(1).

ϕ(s) =
m(1− s)− (1− f(s))

m(1− s)(1− f(s))

=

∞∑
y=1

f [y]
(
(y − 1) + (y − 2)s+ · · ·+ sy−2

)

m ·
∞∑
z=1

f [z](1 + s+ · · ·+ sz−1)

.

ϕ is neither increasing nor decreasing in general.

49



Lemma. Let g1, g2 be probability measures on N0 such that

g2[y]

g1[y]
≤
g2[z]

g1[z]
for all y < z .

Also let α : N0 → R be a non-decreasing function. Then

∞∑
y=0

α(y)g1[y] ≤
∞∑
y=0

α(y)g2[y] .
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Consider for 0 < s ≤ 1 and r ∈ N0 the probability measures

gs[y] =
sr−y

1 + s+ · · ·+ sr
, 0 ≤ y ≤ r .

We obtain that
r∑

y=0

ygs[y] =
sr−1 + 2sr−2 + · · ·+ r

1 + s+ · · ·+ sr

is a decreasing function in s.

It follows for 0 ≤ s ≤ 1

r

2
≤
r + (r − 1)s+ · · ·+ sr−1

1 + s+ · · ·+ sr
≤ r .
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Thus let

ψ(s) :=

∞∑
y=1

f [y](y − 1)(1 + s+ · · ·+ sy−1)

∞∑
z=1

f [z](1 + s+ · · ·+ sz−1)

.

Check that we may apply the lemma to gs, 0 ≤ s ≤ 1, given by

its weights

gs[y] :=
f [y](1 + s+ · · ·+ sy−1)
∞∑
z=1

f [z](1 + s+ · · ·+ sz−1)

, y ≥ 1 .

Thus ψ is increasing. 2
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