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From little (unobservable) to big,  
From scattered to dense. 
From independence between elements 
to interaction and ultimate deterministic 
behaviour, after suitable norming. 

•  Think warts, tumours, species invading a habitat, or 
a set of replicating DNA molecules, small but 
growing quickly. Or, think the early universe! 

•  ‘Populations’, of individuals/elements, creating new 
individuals – first independently, then under 
increasing influence from outside/others, when the 
population grows big and dense, and usually less 
and less successfully, as space and/or nourishment 
per individual decreases. 



Fixed (unknown?) start →  little 
population of free (random) 

elements → deterministic (even 
continuous) system (after norming) 

•  From (almost) branching processes to 
differential equations. But in between ?! 

•  Classical example: spread of epidemics. 
•  But our starting point was different: a 

model of DNA replication in the 
Polymerase Chain Reaction (PCR). 

•  How many were the perpetrators? 



Problem 
•  From how many elements did the 

population start? 
•  Data: The density (x = number/K) can be 

seen only when ¸ ½ > 0.  
•  Idea: While the density  is small,  the 

population size at time n, Zn, will be like an 
ordinary, supercritical  GW process.  

•  The carrying capacity K is some system 
size measure. Sometimes the population 
is supercritical when < K and subcritical 
above – but not necessarily. 



Heuristics 
•  Let z0 be the number of ancestors and a > 1 the 

mean reproduction when density x=0 .  
•  For this classical process “reproduction as 

though x=0”, Zn » W(z0)an, W(z0) the sum of z0 
i.i.d. random variables with mean 1.  

•  Similarly, if n is large but x still smaller than  
O(log K), say n = nK = ² log K<< ½ K for K large,  

•  At later times, by Markov, Zn is thus a function 
of W(z0)an

K , maybe deterministic due to large 
number effects. 

•  z0 =W(z0) , Var[W]=0 , reproduction variance 
= 0 , deterministic future. 



From sounds to things! 

•  {»ni; i 2 N}, n2 N integer valued ¸ 0. 
•  Fn := ¾({»ki; i 2 N}, k · n}, »ni; i 2 N |Fn-1 iid. 
•  Zn =Z(n) = ∑i=1

Z(n-1) »ni, Xn=Zn/K, the density at 
n, which is Markov for given K. 

•  E[»ni| Fn-1] = mK(Xn-1), Var[»ni| Fn-1]  = ¾2
K(Xn-1) 

•  E[Xn|Xn-1=x] = fK(x) = xmK(x) 



Smoothness assumptions 
1.  As K→1, mK→ m2 C1(R+), , uniformly.                                          

|xmK(x)-xm(x)|2 =O(1/K), K→ 1 
2.  f(x)=xm(x) increases strictly. Note: f(0)=0. 
3.  m0 is uniformly continuous around 0. 
4.  As K→1, X0 has a limit in probabiliy. 
5.  The variances ¾2

K(x), are uniformly bounded 
and, as K→1, ¾2

K(x)→ some ¾2(x). 
6.  The »ni|Xn-1=x increase in distribution with K 

and decrease in x. 
7.  1<m(0)=a¸ mK(x)=a(1-Cx+o(x)), x→ 0 



That is: 

•  For each carrying capacity K and density 
x, a branching type behaviour. 

•  Natural assumptions as K and x vary, 
including the limit and convergence rate as 
K→1. 

•  The interest is in K large, as compared to 
the population, i.e. K→1. 



So, what happens? 
•  Write fn= f± f ± …f, n times.  
•  Klebaner’s Threshhold Thm: If…, then Xn → 

fn(x0), as K→1, in probability (or L1), provided 
X0→ x0 in the same sense. 

•  But this is for fixed n. In our case z0 is fixed, so 
X0→ 0, and f(0)=0! 

•  Only around time log K will the density be 
positive, cf. the heuristics. (log with base a.) 

•  But fn(x/an) has a uniform and strictly 
increasing limit h(x). 

 



Xlog K? 

•  Write Y(n) = ∑i=1
Y(n-1) ´ni, the summands iid 

with the limiting reproduction distribution at 
x=0, as K→1. Let W(z0) = lim Yn/an.  

•  Recall fn= f± f ± …f, n times, fn(x/an) → h(x). 
•  And as K→1, Xlog K  → h(W(zo)),  in 

distribution. 
•  Proof by a two step approximation, first Zn ¼ 

Y(n) up to ² log K. Then a restart  from 
x=W(z0) and Klebaner’s theorem. 

  



And the whole process? 

•  Main result:  Xloga K + n →  fn± h(W(z0)) = 
h(anW(z0)), in distribution,  n2 N, as K→1, 
(functional convergence).  

•  Here, with W=W(1),  E[e-saW] = g± E[e-sW], 
where g is the generating function of ´, i.e. 
the limiting reproduction at density 0, as 
K→1 , and W(z) is the sum of z iid W-
copies 

•  1<a= m(0)=E[´], ¾2= ¾2(0) = Var[´], 
E[W]=1, Var[W]=¾2/a(a-1). 



Properties 

•  Observe the density X at time t = log K +n. 
•  Then the number of original elements was 
•  z0 = E[W(z0)] ¼ E[h-1(X)]/an, for K large. 
•   And z0¼ h-1(X)/an , W(z0)=E[W(z0)] , 

Var[W]=0 , ¾2=0. 
•   Similarly, the future is determined by 

W(z0) , and hence by h-1(X)ak-n, k=n, n+1, 
….  



A corresponding time change 

•  Now, change also time scale to unit K: 
•  Xt = ZtK/K, the density in intrinsic time. 
•  Then, X(log K)/K ¼ h±W(z0), by our earlier 

result.  
•  Since K is large, (log K)/K¼ 0, and the 

process seems to start from X0¼ h±W(z0). 
•  The real start from z0 elements has been 

concealed by the random veil of h±W(z0). 



Conclusion 
•  We have considered populations which start 

small and scattered. Hence, individuals 
multiply freely (=randomly). 

•  As the population and whole system grow, at 
the same pace, law of large numbers’ effects 
render a deterministic macroscopic 
description natural. 

•  And randomness appears only at the very 
beginning of the system (though that was 
actually deterministic!) but has lasting effects. 

•  A general phenomenon of nature?  



Klebaner’s Threshold Theorem 
simplified version 

•  Branching structure. Zn+1= ∑j=1
Z(n) »jn, where 

Z(n)=Zn , »jn may depend on K, and are i.i.d. 
integer valued ¸ 0, given the past (Markov). 

•  Scale. E[Xn+1|Xn=x] = xmK(x) = xE[»|Xn=x] 
•  Stabilisation. X0 → x¸ 0 (P) (or L1), as K→1; 

mK(x + o(1)) → m(x)  (P), and similarly        
Var[»|Xn=x + o(1)] = o(K).  

•  Then, Xn → fn(x), as K→1, in probability (or L1 

or even L2); f(x):= xm(x). 


