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In this study I will look at some simple size-dependent branch-
ing processes with varying carrying capacities. The shape of the
(deterministic) production functions is decisive when it comes
to certain modes of extinction, such as the growth-catastrophe
behavior and the response to sudden shocks.

It is well known that most size-dependent branching models
have a life time whose expectation is exponential in the carrying
capacity K. A study by Hamza et al. (Journ. Math. Biol.
2016) exhibits an explicit expression for the dependence in a
very simple, but illustrative case. One of the conclusions drawn
is that extinction rarely depends on demographic variation in a
fixed environmental setting: the life time is usually extremely
long.

The main focus here is, then, on the case with fluctuating en-
vironment.
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where z is the population size, K the carrying capacity, r or e”
the mean growth rate at small sizes, b > 1 is a parameter.
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We notice, for instance, that the Beverton-Holt model and the
Hassell models with b small, do not react as dramatically to
over-population as the Ricker model does.

In the size-dependent discrete-time branching process studied
by Hamza et al. we have Z; particles at time £. At time ¢ + 1
each of them, independently, with probability %Zt gives rise

to 2 offspring and dies. With probability 1 — K—I|—<Zt it dies
without offspring.

The mean of the process at time ¢ + 1, given that we have Z;

particles at time ¢ is
27,

1+ 2

N

If we start from very low values there is a chance that the
process goes extinct fast. But if not, it will soon (after about
log(K) steps) stabilize around the attracting fixed point K.
The time of descending below the level % has expectation at
least exp(cK) where ¢ = .

The calculations rely on a large deviations result for binomial
variables due to Svante Janson (1994). The process close to K
may also be approximated by a linear autoregressive process
(Klebaner and Nerman (1994)). The exit time for the AR
approximation is even longer, of the order of exp(3—32-K ) (Jung
2008, 2013)



Using one of the other maps to define the probabilities does
not change the picture very much. In the Ricker case we would

. : Z
take r = log2 and the probability of offspring = exp(—%¢).
The fixed point is then 7K.

The AR approximation leaves the level % after exp(0.0785K)
steps, while the lower bound, by Janson, is about
exp(0.0105K). Again, this is a very large number even for
biologically moderate K.

While fixed K in all our cases always lead to life times expo-
nential in K, large values of r may blur the impression since
the asymptotics sets in only for very large carrying capacities.

Let 7 in the Ricker model be 4, say. The deterministic model is
chaotic; the quotient between the largest and smallest value is
in the millions. Regardless of our assumptions on the branch-
ing mechanism, the probability of immediate extinction from
the level 20K is about (1 — exp(—20))2°K which is about 1 —
20K exp(—20) for moderate K.



Let me now assume that the carrying capacities K; form an
1.i.d. sequence of random variables on the whole positive real
line (0,00). The real-valued process, obtained by iteration of
these random mappings, is then positive recurrent (Gyllenberg
et al. 1994).

The first question that I would like to investigate is resilience
to sudden moderate shocks. Let us imagine that the process is
subject to a drop in carrying capacity, to a tenth of its former
value, say. Will it be able to survive the shock? This will
depend on the form of our production function.

The branching mechanism is as follows. Again let Z; be the
number of individuals at time ¢. They have offspring, indepen-
dently, conditional on the carrying capacity sequence, with a
probability of

K 1 Z
t+1 exp(— = t
t+1

)

in our different cases. Otherwise, they die without offspring.
The offspring distribution is assumed given, with mean r, r, and
e”, respectively. |

Beverton-Holt case: Probability of extinction is only about

exp(—%¢).

In the Ricker case the probability of extinction is appreciable
for moderately large K, it is (1 —e~17)"&¢, The value is about
.51 for r = log 2 and K; = 1000.
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The Hassell models lie in-between, extinction is probable for
small Kt.

The nature of these one-dimensional models is such that, if they
survive, they adapt to changes in the environment immediately,
so that several “equally bad years” are no worse than the first
shock. Overpopulation is detrimental as well: the discrete-time
model may not be able to limit excessive growth (as opposed
to models in continuous time) until it is too late.

Next, I will show that the extinction by a growth-catastrophe
scenario may in some cases lead to shorter than exponential life
times. The mechanism is roughly the same as we saw earlier
in the Ricker model when K was constant and r was large.

For the Beverton-Holt model excessive growth is not immedi-
ately dangerous: The probability of extinction in one step from
very high values above K is about exp(—K).

For the Ricker case (and the Hassell with b > 1) the situation
is different.

Proposition. Let K be a (large) positive number, let L be a
given random variable and let KL; be an i.i.d. sequence. If
the support of the random variable L is all of (0,00) with a
heavy tail then the expected life-time of the branching process

following the Ricker model grows slower than exponentially in
K.

If pure growth is allowed with positive probability (L = o0)
then the expected life-time is polynomial.

6



Proof sketch.

First take an m,0 < m < expr and identify a point z* such
that exp(r —x) > m for 0 < z < z*. Take a fixed K and let
the random carrying capacity sequence be KL;. Put P{L < 1}

Then choose a large GG such that the extinction probability of
the process given that Z, > G and Ly < 1 is at least 1/2.

G may be chosen to be 2K log K asymptotically: The extinc-

tion probability from level G is about (1 — exp(— KLCzH))G

which is larger than (1 — exp(—2log K))?#1°6 K which is turn
tends to 1 for large K.

Now we notice that a long sequence of “good years” with KL
large enough will take the process to the level G.

If L > 21;—%[{ then the process grows at the rate m with prob-
ability at least % until the level 2K log L is reached.

It takes at most ng = lo;gn ¢ steps to reach the level G. At this

level the probability of immediate extinction is at least £.

Now the probability of extinction in at most nx + 1 steps is

q
2Pk

. e 2log K
where 2pk is the probability of L > ===

If the exit time is denoted by 1" then we get that

DN
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Let us for a moment let p be constant (as it is in the case with
unlimited growth) then the expression

p~ " = exp(— log(ﬂ;log K) log p) which is less than

3 1

asymptotically.

If L has an exponential tail we get that px is of the form
exp(—clog K) for some positive ¢. The whole expression for
ET' is then majorized by

K%clogK

disregarding some factors of less importance.

If L has a heavier tail we get a slightly slower growth of ET.

Remark. In the Hassell case the point G is of the form K@
where the exponent a should be taken larger than b_il. If L
has exponential tails we would get

ET < K=ok



Finally, we see that sudden extreme shocks effectively reduces
the expected life-time drastically.

The setup is the same as in the preceding discussion. K is fixed
and the random carrying capacity is K L; where L has a given
distribution on the whole of (0, 00). We assume further that it
has a density ¢ > 0 at 0 and that its mean is 1.

Proposition. The expected extinction time for the size-depen-
dent branching process generated using the Beverton-Holt
model is linear in K.

In the Hassell case it is of the order of Kt and for the Ricker
model a constant times log K.

Proof idea.

Take the Beverton-Holt case first. We suppose that the pro-
cess has attained the level Z; = K. Then a carrying capacity
of K L;y; will kill the process with probability (dropping the
subscripts for simplicity)

1
1_ K
which is about exp(—KL). Thus if KL = 1 the probability is
1
e t.

P{L < %} is approximately . Then we have a probability of

7. of immediate extinction from level K.

The expected time of extinction ET will then be at most %

(The time of attaining level K or below is tacitly assumed to
be small.)



For the Ricker model (assuming the level rK) the same kind
of argument gives us

BT < elogTK.

Cc

In the Hassell case we get a life-time of the order of K ;.

Remark. If we dispense with the assumption that we have
a positive density at 0, a much more refined analysis of the
probability of small L (or big +) is needed.
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