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Multi-type Galton-Watson process

Each individual has a type i in a countable type set X ≡ N

The process initially contains a single individual of type ϕ0

Each individual lives for a single generation

At death, individuals of type i have children according to the
progeny distribution : pi (r) : r = (r1, r2, . . .), where

pi (r) = probability that a type i gives birth to r1 children of
type 1, r2 children of type 2, etc.

All individuals are independent
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Multi-type Galton-Watson process

Population size : Zn = (Zn1,Zn2, . . .), n ∈ N0, where

Zni : # of individuals of type i in the nth generation

{Zn}n≥0 : ∞-dim Markov process with abs. state 0 = (0, 0, . . .).
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Multi-type Galton-Watson process

Progeny generating vector G (s) = (G1(s),G2(s),G3(s), . . .), where
Gi (s) is the progeny generating function of an individual of type i

Gi (s) = E
(
sZ1

∣∣∣ϕ0 = i
)

=
∑
r

pi (r)
∞∏
k=1

srkk , s ∈ [0, 1]X .

Mean progeny matrix M with elements

mij =
∂Gi (s)

∂sj

∣∣∣∣
s=1

= expected number of direct offspring of type j

born to a parent of type i
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Extinction probabilities

For A ⊆ X the extinction probability vector q(A) has entries

qi (A) = P

[
lim
n→∞

∑
`∈A

Zn` = 0
∣∣ϕ0 = i

]

Global extinction probability vector : ext. of the whole process

q = q(X )

Partial extinction probability vector : ext. of all types

q̃ = lim
k→∞

q({1, . . . , k})

We have
0 ≤ q ≤ q̃ ≤ 1
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Example : nearest neighbour BRW

Suppose G0(s) = G0(s0, s1), and Gi (s) = Gi (si−1, si , si+1), i ≥ 1
with mean progeny matrix

M =


b c 0 0 0 . . .
a b c 0 0
0 a b c 0
0 0 a b c
...

. . .
. . .

. . .

 ,
which can be represented as

0 1 2 3 . . .

c c c

a a a

b b b b

c

a
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Example : nearest neighbour BRW

a = 1/20, b = 1/2, c = 1/2 ;
b + 2

√
ac < 1, a + b + c > 1, c > a
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In this case q < q̃ = 1.
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Fixed points

For any A ⊆ X the vector q(A) satisfies the fixed point equation

s = G (s).

That is, q(A) is an element of

S = {s ∈ [0, 1]∞ : s = G (s)}.
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The set S of fixed points in the irreducible case

The vector q is the minimal non-negative element of S

Finite type case :

The set S contains at most two elements, q = q̃ and 1.

Infinite type case :

Moyal (1962) : S contains at most a single solution with
lim supi si < 1 (corresponding to q).

Spataru (1989) : S contains at most two elements, q and 1.

Bertacchi and Zucca (2014,2015) : proved the inaccuracy of
the later and provided an irreducible process where S contains
uncountably many elements.

Can we tell more about S and the location of q(A) 6= q ?
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Lower Hessenberg branching processes

We assume M is lower Hessenberg

M =


m00 m01 0 0 0 . . .
m10 m11 m12 0 0
m20 m21 m22 m23 0

...
. . .


Type i ≥ 0 individuals cannot have offspring of type j > i + 1.

We assume mi ,i+1 > 0 for all i ≥ 0.

0 1 2 3 4 . . .
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Embedded Galton-Watson process in varying environment

{Zn}
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Embedded Galton-Watson process in varying environment

{Zn} → {Yk}
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Embedded Galton-Watson process in varying environment

{Yk}
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Embedded Galton-Watson process in varying environment

{Yk} has two absorbing states, 0 and ∞.

Theorem (Braunsteins and H., 2017)

Partial extinction in {Zn}
a.s⇐⇒ Yk <∞ for all k ≥ 0

Global extinction in {Zn}
a.s⇐⇒ Yk = 0 for some k ≥ 0

The progeny generating functions gk(s) = E [sYk+1 |Yk = 1] may be
defective, that is, gk(1) ≤ 1.

We derived implicit and explicit expressions for gk(s) in terms of
G (s), and recursive expressions for the first two moments
µk = g ′k(1) and ak = g ′′k (1).
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Extinction Criteria

Theorem (Braunsteins and H., 2017)

Suppose

µ0 =
m01

1−m00
and µk =

mk,k+1

1−
∑k

i=1 mki
∏k−1

j=i µj
,

then
q̃ = 1 ⇔ 0 ≤ µk <∞ ∀ k ≥ 0

and, when q̃ = 1,

q = 1 ⇔
∞∑
j=1

(
j∏

`=1

µ`

)−1

=∞.∗

∗ : under some second moment assumptions.
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Fixed points

Recall that S = {s ∈ [0, 1]∞ : s = G (s)}.

Here,
si = Gi (s0, s1, . . . , si , si+1), i ≥ 0.

→ It suffices to study the one-dimensional projection sets :

Si = {x ∈ [0, 1] : ∃ s ∈ S , such that si = x}.

16



Fixed points

Illustration of Si :

qi = q̃i < 1 :

qi = q̃i = 1 :

qi < q̃i = 1 :

qi < q̃i < 1 :

0

0

0

0

qi = q̃i 1

qi = q̃i = 1

q̃i = 1qi

1qi q̃i

Theorem (Braunsteins and H., 2017)

Suppose {Zn} is irreducible. If S = {1} then q = q̃ = 1, otherwise

q = minS and q̃ = supS\{1}.

In particular,
Si = [qi , q̃i ] ∪ 1, i ≥ 0.
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General extinction events

In an irreducible lower Hessenberg branching process, q(A) takes
at most two distinct values :

q(A) = q̃ if |A| <∞

q(A) = q if |A| =∞

→ for LHBPs, we have identified the location of all q(A) in S .
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Now we add layers...
Example : the double nearest-neighbour BRW

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .
c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a

Depending on the parameter values, q(A) takes one of up to four
different values.

19



Block lower Hessenberg branching processes

With d ≥ 1 layers, the type space is Xd = X × {1, . . . , d}.

The mean progeny matrix M is block lower Hessenberg

M =


M11 M12 0 0 0 . . .
M21 M22 M23 0 0
M31 M32 M33 M34 0

...
. . .



Each Mij is an d × d matrix

We assume M is irreducible
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Extinction in layers

We still have

q(A) = q̃ if |A| <∞

q(Xd) = q.

However, now we can have q(A) > q for some |A| =∞.

Ai = the infinite set of types forming the ith layer, 1 ≤ i ≤ d .

A process can now survive in A2 while enduring extinction in A1.

We consider sets A ∈ σ(A1, . . . ,Ad) and their complement Ā.

When do we have q < q(A) < q̃ ?
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Extinction in layers

When do we have q < q(A) < q̃ ?

Theorem (Braunsteins and H., 2018)

Let A ∈ σ(A1, . . . ,Ad), and assume q̃(Ā) < 1 and ν(M̃(Ā)) < 1. If,
in addition,

(A)
∑∞

k=0(1>v t(Ā)
k )M̃(Ā)

0→k−11v <∞, and

(B) there exists K <∞ such that F̃
(Ā)
k ≤ K 1v · 1>v for all k ≥ 0,

then q < q(A) and q(Ā) < q̃.
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Example : double nearest-neighbour BRW

A = A1, Ā = A2

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a
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Example : double nearest-neighbour BRW

A2 is able to globally survive without the help of A1 but becomes
partially extinct,

(A) + (B) : finite expected number of (sterile) types in A1 from A2

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

y y/x y/x2 y/x3

b b b b

c

a

→ q < q(A1) and q(A2) < q̃

→ q < q(A1),q(A2) < q̃
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Example : double nearest-neighbour BRW

Proposition (Braunsteins and H., 2018)

Suppose b + 2
√
ac < 1 and

µ :=

(
1− b −

√
(1− b)2 − 4ac

)
/2a > 1.

We have

(i) if x = 1 and b + y + 2
√
ac ≤ 1, then

q = q(A1) = q(A2) < q̃ = 1 ;

(ii) if x = 1 and b + y + 2
√
ac > 1, then

q = q(A1) = q(A2) = q̃ < 1 ;

(iii) if x > 1, then q < q̃ ;

(iv) if x > µ, then q < q(A1) < q̃ and q < q(A2) < q̃.
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Example : double nearest-neighbour BRW

a = 1/5, b = 0, c = 1, y = 1/5→ µ = 1.38, b + y + 2
√
ac = 1.09

Figure – The extinction probabilities q〈0,1〉, q〈0,1〉(A1), q〈0,1〉(A2) and
q̃〈0,1〉 for 1 ≤ x ≤ 3.
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Example : double nearest-neighbour BRW

We study the set of fixed points S by projecting it on types 0

→ 2-d projection set S0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW
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Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Conjecture

If q = q̃ then S = {q, 1}, whereas if q < q̃ then S contains a
continuum of elements, whose minimum is q, and whose maximum
is q̃.

In addition, the boundary of any projection set is differentiable
everywhere except at each point that corresponds to an extinction
probability vector q(A) for some A ⊆ Xd .

We believe that this conjecture applies more generally to any
irreducible branching process with countably many types.
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