## Extinction in block lower Hessenberg branching processes with countably many types <br> or

The probabilities of extinction in a branching random walk on a strip

Sophie Hautphenne Joint work with Peter Braunsteins

The University of Melbourne

Badajoz, April 10, 2018

## Multi-type Galton-Watson process

- Each individual has a type $i$ in a countable type set $\mathcal{X} \equiv \mathbb{N}$
- The process initially contains a single individual of type $\varphi_{0}$
- Each individual lives for a single generation
- At death, individuals of type $i$ have children according to the progeny distribution : $p_{i}(\boldsymbol{r}): \boldsymbol{r}=\left(r_{1}, r_{2}, \ldots\right)$, where $p_{i}(\boldsymbol{r})=$ probability that a type $i$ gives birth to $r_{1}$ children of type $1, r_{2}$ children of type 2 , etc.
- All individuals are independent


## Multi-type Galton-Watson process



Population size : $\boldsymbol{Z}_{n}=\left(Z_{n 1}, Z_{n 2}, \ldots\right), n \in \mathbb{N}_{0}$, where
$Z_{n i}: \#$ of individuals of type $i$ in the $n$th generation
$\left\{\boldsymbol{Z}_{n}\right\}_{n \geq 0}: \infty$-dim Markov process with abs. state $\mathbf{0}=(0,0, \ldots)$.

## Multi-type Galton-Watson process

Progeny generating vector $\boldsymbol{G}(\boldsymbol{s})=\left(G_{1}(\boldsymbol{s}), G_{2}(\boldsymbol{s}), G_{3}(\boldsymbol{s}), \ldots\right)$, where $G_{i}(\boldsymbol{s})$ is the progeny generating function of an individual of type $i$

$$
G_{i}(\boldsymbol{s})=\mathbb{E}\left(\boldsymbol{s}^{\boldsymbol{Z}_{1}} \mid \varphi_{0}=i\right)=\sum_{\boldsymbol{r}} p_{i}(\boldsymbol{r}) \prod_{k=1}^{\infty} s_{k}^{r_{k}}, \quad \boldsymbol{s} \in[0,1]^{\mathcal{X}}
$$

Mean progeny matrix $M$ with elements

$$
\begin{aligned}
m_{i j} & =\left.\frac{\partial G_{i}(\boldsymbol{s})}{\partial s_{j}}\right|_{\boldsymbol{s}=\mathbf{1}} \\
& =\text { expected number of direct offspring of type } j \\
& \quad \text { born to a parent of type } i
\end{aligned}
$$

## Extinction probabilities

For $A \subseteq \mathcal{X}$ the extinction probability vector $\boldsymbol{q}(A)$ has entries

$$
q_{i}(A)=\mathbb{P}\left[\lim _{n \rightarrow \infty} \sum_{\ell \in A} Z_{n \ell}=0 \mid \varphi_{0}=i\right]
$$

Global extinction probability vector: ext. of the whole process

$$
\boldsymbol{q}=\boldsymbol{q}(\mathcal{X})
$$

Partial extinction probability vector: ext. of all types

$$
\widetilde{\boldsymbol{q}}=\lim _{k \rightarrow \infty} \boldsymbol{q}(\{1, \ldots, k\})
$$

We have

$$
\mathbf{0} \leq \boldsymbol{q} \leq \widetilde{\boldsymbol{q}} \leq \mathbf{1}
$$

## Example : nearest neighbour BRW

Suppose $G_{0}(\boldsymbol{s})=G_{0}\left(s_{0}, s_{1}\right)$, and $G_{i}(\boldsymbol{s})=G_{i}\left(s_{i-1}, s_{i}, s_{i+1}\right), i \geq 1$ with mean progeny matrix

$$
M=\left[\begin{array}{cccccc}
b & c & 0 & 0 & 0 & \cdots \\
a & b & c & 0 & 0 & \\
0 & a & b & c & 0 & \\
0 & 0 & a & b & c & \\
\vdots & & & \ddots & \ddots & \ddots
\end{array}\right]
$$

which can be represented as


## Example : nearest neighbour BRW

$$
\begin{aligned}
& a=1 / 20, b=1 / 2, c=1 / 2 \\
& b+2 \sqrt{a c}<1, a+b+c>1, c>a
\end{aligned}
$$



In this case $\boldsymbol{q}<\widetilde{\boldsymbol{q}}=\mathbf{1}$.

## Fixed points

For any $A \subseteq \mathcal{X}$ the vector $\boldsymbol{q}(A)$ satisfies the fixed point equation

$$
\boldsymbol{s}=\boldsymbol{G}(\boldsymbol{s})
$$

That is, $\boldsymbol{q}(A)$ is an element of

$$
S=\left\{\boldsymbol{s} \in[0,1]^{\infty}: \boldsymbol{s}=\boldsymbol{G}(\boldsymbol{s})\right\} .
$$

## The set $S$ of fixed points in the irreducible case

The vector $\boldsymbol{q}$ is the minimal non-negative element of $S$

## Finite type case :

- The set $S$ contains at most two elements, $\boldsymbol{q}=\widetilde{\boldsymbol{q}}$ and $\mathbf{1}$.

Infinite type case :

- Moyal (1962) : $S$ contains at most a single solution with $\limsup { }_{i} s_{i}<1$ (corresponding to $\boldsymbol{q}$ ).
- Spataru (1989) : $S$ contains at most two elements, $\boldsymbol{q}$ and 1.
- Bertacchi and Zucca $(2014,2015)$ : proved the inaccuracy of the later and provided an irreducible process where $S$ contains uncountably many elements.

Can we tell more about $S$ and the location of $\boldsymbol{q}(A) \neq \boldsymbol{q}$ ?

## Lower Hessenberg branching processes

- We assume $M$ is lower Hessenberg

$$
M=\left[\begin{array}{cccccc}
m_{00} & m_{01} & 0 & 0 & 0 & \ldots \\
m_{10} & m_{11} & m_{12} & 0 & 0 & \\
m_{20} & m_{21} & m_{22} & m_{23} & 0 & \\
\vdots & & & & & \ddots
\end{array}\right]
$$

- Type $i \geq 0$ individuals cannot have offspring of type $j>i+1$.
- We assume $m_{i, i+1}>0$ for all $i \geq 0$.



## Embedded Galton-Watson process in varying environment



## Embedded Galton-Watson process in varying environment



## Embedded Galton-Watson process in varying environment



## Embedded Galton-Watson process in varying environment

$\left\{Y_{k}\right\}$ has two absorbing states, 0 and $\infty$.

## Theorem (Braunsteins and H., 2017)

Partial extinction in $\left\{\boldsymbol{Z}_{n}\right\} \quad \stackrel{\text { a.s }}{\Longleftrightarrow} \quad Y_{k}<\infty \quad$ for all $k \geq 0$ Global extinction in $\left\{\boldsymbol{Z}_{n}\right\} \quad \stackrel{\text { a.s }}{\Longleftrightarrow} \quad Y_{k}=0 \quad$ for some $k \geq 0$

The progeny generating functions $g_{k}(s)=E\left[s^{Y_{k+1} \mid} Y_{k}=1\right]$ may be defective, that is, $g_{k}(1) \leq 1$.

We derived implicit and explicit expressions for $g_{k}(s)$ in terms of $\boldsymbol{G}(\boldsymbol{s})$, and recursive expressions for the first two moments $\mu_{k}=g_{k}^{\prime}(1)$ and $a_{k}=g_{k}^{\prime \prime}(1)$.

## Extinction Criteria

## Theorem (Braunsteins and H., 2017)

Suppose

$$
\mu_{0}=\frac{m_{01}}{1-m_{00}} \quad \text { and } \quad \mu_{k}=\frac{m_{k, k+1}}{1-\sum_{i=1}^{k} m_{k i} \prod_{j=i}^{k-1} \mu_{j}}
$$

then

$$
\widetilde{\boldsymbol{q}}=\mathbf{1} \quad \Leftrightarrow \quad 0 \leq \mu_{k}<\infty \forall k \geq 0
$$

and, when $\widetilde{\mathbf{q}}=\mathbf{1}$,

$$
\boldsymbol{q}=\mathbf{1} \quad \Leftrightarrow \quad \sum_{j=1}^{\infty}\left(\prod_{\ell=1}^{j} \mu_{\ell}\right)^{-1}=\infty^{*}
$$

* : under some second moment assumptions.


## Fixed points

Recall that $S=\left\{\boldsymbol{s} \in[0,1]^{\infty}: \boldsymbol{s}=\boldsymbol{G}(\boldsymbol{s})\right\}$.
Here,

$$
s_{i}=G_{i}\left(s_{0}, s_{1}, \ldots, s_{i}, s_{i+1}\right), \quad i \geq 0
$$

$\rightarrow$ It suffices to study the one-dimensional projection sets:

$$
S_{i}=\left\{x \in[0,1]: \exists \boldsymbol{s} \in S, \text { such that } s_{i}=x\right\} .
$$

## Fixed points

Illustration of $S_{i}$ :

$$
\begin{aligned}
q_{i} & =\widetilde{q}_{i}=1: & 0 & \\
q_{i} & =\widetilde{q}_{i}<1: & 0 & q_{i}=\widetilde{q}_{i} \\
q_{i} & <\widetilde{q}_{i} & =1: & 0 \\
q_{i} & <\widetilde{q}_{i}<1: & 0 & q_{i}
\end{aligned}
$$

$0 \quad q_{i}$
and H., 2017)
Suppose $\left\{\boldsymbol{Z}_{n}\right\}$ is irreducible. If $S=\{\mathbf{1}\}$ then $\boldsymbol{q}=\widetilde{\boldsymbol{q}}=\mathbf{1}$, otherwise

$$
\boldsymbol{q}=\min S \quad \text { and } \quad \widetilde{\boldsymbol{q}}=\sup S \backslash\{\mathbf{1}\} .
$$

In particular,

$$
S_{i}=\left[q_{i}, \widetilde{q}_{i}\right] \cup 1, \quad i \geq 0 .
$$

## General extinction events

In an irreducible lower Hessenberg branching process, $\boldsymbol{q}(A)$ takes at most two distinct values :

- $\boldsymbol{q}(A)=\widetilde{\boldsymbol{q}}$ if $|A|<\infty$
- $\boldsymbol{q}(A)=\boldsymbol{q}$ if $|A|=\infty$
$\rightarrow$ for LHBPs, we have identified the location of all $\boldsymbol{q}(A)$ in $S$.


## Now we add layers...

## Example : the double nearest-neighbour BRW



Depending on the parameter values, $\boldsymbol{q}(A)$ takes one of up to four different values.

## Block lower Hessenberg branching processes

- With $d \geq 1$ layers, the type space is $\mathcal{X}_{d}=\mathcal{X} \times\{1, \ldots, d\}$.
- The mean progeny matrix $M$ is block lower Hessenberg

$$
M=\left[\begin{array}{cccccc}
M_{11} & M_{12} & 0 & 0 & 0 & \ldots \\
M_{21} & M_{22} & M_{23} & 0 & 0 & \\
M_{31} & M_{32} & M_{33} & M_{34} & 0 & \\
\vdots & & & & & \ddots
\end{array}\right]
$$

- Each $M_{i j}$ is an $d \times d$ matrix
- We assume $M$ is irreducible


## Extinction in layers

We still have

- $\boldsymbol{q}(A)=\widetilde{\boldsymbol{q}}$ if $|A|<\infty$
- $\boldsymbol{q}\left(\mathcal{X}_{d}\right)=\boldsymbol{q}$.

However, now we can have $\boldsymbol{q}(A)>\boldsymbol{q}$ for some $|A|=\infty$.
$A_{i}=$ the infinite set of types forming the $i$ th layer, $1 \leq i \leq d$.
A process can now survive in $A_{2}$ while enduring extinction in $A_{1}$.
We consider sets $A \in \sigma\left(A_{1}, \ldots, A_{d}\right)$ and their complement $\bar{A}$.
When do we have $\boldsymbol{q}<\boldsymbol{q}(A)<\widetilde{\boldsymbol{q}}$ ?

## Extinction in layers

When do we have $\boldsymbol{q}<\boldsymbol{q}(A)<\widetilde{\boldsymbol{q}}$ ?
Theorem (Braunsteins and H., 2018)
Let $A \in \sigma\left(A_{1}, \ldots, A_{d}\right)$, and assume $\tilde{q}^{(\bar{A})}<1$ and $\nu\left(\tilde{M}^{(\bar{A})}\right)<1$. If, in addition,
(A) $\sum_{k=0}^{\infty}\left(1_{v}^{\top} t_{k}^{(\bar{A})}\right) \tilde{M}_{0 \rightarrow k-1}^{(\bar{A})} 1_{v}<\infty$, and
(B) there exists $K<\infty$ such that $\tilde{F}_{k}^{(\bar{A})} \leq K 1_{v} \cdot 1_{v}^{\top}$ for all $k \geq 0$, then $\boldsymbol{q}<\boldsymbol{q}(A)$ and $\boldsymbol{q}(\bar{A})<\widetilde{\boldsymbol{q}}$.

## Example : double nearest-neighbour BRW

$$
A=A_{1}, \bar{A}=A_{2}
$$



## Example : double nearest-neighbour BRW

$A_{2}$ is able to globally survive without the help of $A_{1}$ but becomes partially extinct,
$(A)+(B)$ : finite expected number of (sterile) types in $A_{1}$ from $A_{2}$

$\rightarrow \boldsymbol{q}<\boldsymbol{q}\left(A_{1}\right) \quad$ and $\quad \boldsymbol{q}\left(A_{2}\right)<\widetilde{\boldsymbol{q}}$

$$
\rightarrow \boldsymbol{q}<\boldsymbol{q}\left(A_{1}\right), \boldsymbol{q}\left(A_{2}\right)<\widetilde{\boldsymbol{q}}
$$

## Example : double nearest-neighbour BRW

## Proposition (Braunsteins and H., 2018)

Suppose $b+2 \sqrt{a c}<1$ and

$$
\mu:=\left(1-b-\sqrt{(1-b)^{2}-4 a c}\right) / 2 a>1 .
$$

We have
(i) if $x=1$ and $b+y+2 \sqrt{a c} \leq 1$, then

$$
\boldsymbol{q}=\boldsymbol{q}\left(A_{1}\right)=\boldsymbol{q}\left(A_{2}\right)<\dot{\widetilde{q}}=\mathbf{1} ;
$$

(ii) if $x=1$ and $b+y+2 \sqrt{a c}>1$, then

$$
\boldsymbol{q}=\boldsymbol{q}\left(A_{1}\right)=\boldsymbol{q}\left(A_{2}\right)=\widetilde{\boldsymbol{q}}<\mathbf{1} ;
$$

(iii) if $x>1$, then $\boldsymbol{q}<\widetilde{\boldsymbol{q}}$;
(iv) if $x>\mu$, then $\boldsymbol{q}<\boldsymbol{q}\left(A_{1}\right)<\widetilde{\boldsymbol{q}}$ and $\boldsymbol{q}<\boldsymbol{q}\left(A_{2}\right)<\widetilde{\boldsymbol{q}}$.

## Example : double nearest-neighbour BRW

$$
a=1 / 5, b=0, c=1, y=1 / 5 \rightarrow \mu=1.38, b+y+2 \sqrt{a c}=1.09
$$



Figure - The extinction probabilities $q_{\langle 0,1\rangle}, q_{\langle 0,1\rangle}\left(A_{1}\right), q_{\langle 0,1\rangle}\left(A_{2}\right)$ and $\tilde{q}_{\langle 0,1\rangle}$ for $1 \leq x \leq 3$.

## Example : double nearest-neighbour BRW

We study the set of fixed points $S$ by projecting it on types 0
$\rightarrow$ 2-d projection set $S_{0}$


## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for a specific value of $x$ (with the shorthand notation $s_{i}$ for $\left.s_{\langle 0, i\rangle}, i=1,2\right)$.

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for $y=1 / 5$ and a specific value of $x$ (with the shorthand notation $s_{i}$ for $s_{\langle 0, i\rangle}, i=1,2$ ).

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for $y=1 / 5$ and a specific value of $x$ (with the shorthand notation $s_{i}$ for $s_{\langle 0, i\rangle}, i=1,2$ ).

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for $y=1 / 5$ and a specific value of $x$ (with the shorthand notation $s_{i}$ for $s_{\langle 0, i\rangle}, i=1,2$ ).

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for $y=1 / 5$ and a specific value of $x$ (with the shorthand notation $s_{i}$ for $s_{\langle 0, i\rangle}, i=1,2$ ).

## Example : double nearest-neighbour BRW



Figure - The projection set $S_{0}$ for $y=1 / 5$ and a specific value of $x$ (with the shorthand notation $s_{i}$ for $s_{\langle 0, i\rangle}, i=1,2$ ).

## Conjecture

If $\boldsymbol{q}=\widetilde{\boldsymbol{q}}$ then $S=\{\boldsymbol{q}, \mathbf{1}\}$, whereas if $\boldsymbol{q}<\widetilde{\boldsymbol{q}}$ then $S$ contains a continuum of elements, whose minimum is $\boldsymbol{q}$, and whose maximum is $\widetilde{q}$.

In addition, the boundary of any projection set is differentiable everywhere except at each point that corresponds to an extinction probability vector $\boldsymbol{q}(A)$ for some $A \subseteq \mathcal{X}_{d}$.

We believe that this conjecture applies more generally to any irreducible branching process with countably many types.

## References

The material of this talk is in
R. Braunsteins and S. Hautphenne Extinction in lower Hessenberg branching processes with countably many types.
arXiv preprint arXiv :1706.02919, 2017.
圊 P. Braunsteins and S. Hautphenne
The probabilities of extinction in a branching random walk on a strip, 2018. Soon on arXiv.

