
Introduction Logistic CSBPs. Main results Sketch of proof References Long-term behavior

Continuous-State Branching Processes with
Competition

Duality and Reflection at Infinity

Clément Foucart
Université Paris 13
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Introduction

Consider a random continuous population with heuristically the
following dynamics:

Each individual reproduces independently from the others,
with a same law (as in a Continuous-State Branching Process)

At constant rate c , a ”pair” of individuals is picked at random
and one kills the other (quadratic competition).

The total size of the population is called logistic CSBP (Lambert
AAP 05). In the case without jumps, the process is the logistic
Feller diffusion :

dZt = σ
√
ZtdBt + γZtdt −

c

2
Z 2
t dt. (1)

Aim: study these processes with a general branching mechanism Ψ
and classify the boundaries
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CSBPs without competition

A general branching mechanism takes the form

Ψ(z) = −λ+ σ2

2 z2 + γz +
∫ +∞

0

(
e−zx − 1 + zx1{x≤1}

)
π(dx)

where

π: a measure over (0,∞) s.t.
∫∞

0 (1 ∧ x2)π(dx) <∞
λ ≥ 0: a killing rate, understood as a jump to ∞ at rate λz

γ ∈ R: a deterministic drift, σ ≥ 0, the Feller diffusion part

Let (Zt , t ≥ 0) be a Ψ-CSBP

Ez [e−xZt ] = e−zut(x), with dut(x)
dt = −Ψ(ut(x))

- It explodes (reaches ∞) with positive probability iff∫
0

du
|Ψ(u)| <∞.

- It reaches 0 with positive probability iff
∫∞ du

|Ψ(u)| <∞.
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Questions

(1) Are there strong enough reproduction laws to face the
competition and explosion to occur (∞ accessible)?

(2) If the process does not explode, is it possible to start it from
infinity ? (∞ entrance.)

(3) If the process explodes, is the competition strong enough to
push back the process in [0,∞) or not ? (∞ regular
reflecting or exit.)

(4) What are the possible long-term behaviors? Is there a
stationary law?

· · ·

Reflecting means that λ({t > 0;Zt =∞}) = 0.
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Minimal Logistic CSBPs: definition

Denote by G the extended generator of a CSBP and set

Lf (z) := Gf (z)− c

2
z2f ′(z).

Definition

A minimal logistic continuous-state branching process is a càdlàg
Markov process (Zmin

t , t ≥ 0) on [0,∞] with 0 and ∞ absorbing,
satisfying (MP). For any function f ∈ C 2

c ((0,∞)), the process

t ∈ [0, ζ) 7→ f
(
Zmin
t

)
−
∫ t

0
Lf
(
Zmin
s

)
ds (MP)

is a martingale under each Pz , with ζ := inf{t ≥ 0;Zmin
t /∈ (0,∞)}.

By minimal process, we mean that if it explodes, the process
remains at ∞ from its explosion time ζ∞ := inf{t ≥ 0,Zmin

t =∞}.



Introduction Logistic CSBPs. Main results Sketch of proof References Long-term behavior

Minimal Logistic CSBP

Theorem

There exists a unique minimal logistic CSBP.

Theorem (Accessibility of ∞)

Assume c > 0. The boundary ∞ is inaccessible for (Zmin
t , t ≥ 0) if

and only if

E :=

∫ θ

0

1

x
exp

(
2

c

∫ θ

x

Ψ(u)

u
du

)
dx =∞,

for some arbitrary θ > 0.
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Construction of minimal logistic CSBPs

Consider (Yt , t ≥ 0) a sp-Lévy process with Laplace exponent −Ψ,
killed at ∞ at an independent exponential r.v. eλ with parameter
λ := −Ψ(0) ≥ 0. Set (Rt , t ≥ 0) the generalized
Ornstein-Uhlenbeck process defined by

Rt = z + Yt −
c

2

∫ t

0
Rsds.

Set σ0 := inf{t ≥ 0,Rt < 0}, θt :=
∫ t∧σ0

0
ds
Rs

and its right-inverse
t 7→ Ct := inf{u ≥ 0; θu > t} ∈ [0,∞]. Let

Zmin
t =


RCt 0 ≤ t < θ∞

0 t ≥ θ∞ and σ0 <∞
∞ t ≥ θ∞ and σ0 =∞.

(Zmin
t , t ≥ 0) is a minimal logistic continuous-state branching

process.
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Explosion criterion

The process (Zmin
t , t ≥ 0) hit ∞ if and only if σ0 =∞ and

θ∞ =

∫ ∞
0

ds

Rs
<∞.

Shiga (PTRF 90) shows that (Rs , s ≥ 0) is recurrent if E =∞ and
transient if E <∞:

if (Rs , s ≥ 0) is recurrent then
∫∞

0
ds
Rs

=∞ on σ0 =∞.
if (Rs , s ≥ 0) is transient, one can show that

Ez

[∫ ∞
0

ds

Rs
;σ0 =∞

]
<∞

from

Ez(e−θRs ) = exp

(
−θe−

c
2
sz +

∫ s

0
Ψ(e−

c
2
uθ)du

)
.
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Duality of generators

For all x ∈ [0,∞[ and z ∈ [0,∞[, let ex(z) := e−xz = ez(x), then

Lemma (Generator duality)

Lex(z) = Aez(x) with Af (x) = c
2xf
′′(x)−Ψ(x)f ′(x).

Proof.

Lex(z) = Ψ(x)zex(z) + c
2xz

2ex(z) = −Ψ(x)∂ez (x)
∂x + c

2x
∂2ez (x)
∂x2 .

There exists a unique strong solution to

dUt =
√
cUtdBt −Ψ(Ut)dt (?),

up to τ := inf{t > 0,Ut /∈ (0,∞)} (Ψ is locally lipschitz on
(0,∞)). However, 0 can be exit, regular or entrance and there is
not a unique semi-group associated to A.
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In the sequel, we say that a process (Zt , t ≥ 0) extends the
minimal process if (Zt , t ≥ 0) takes its values in [0,∞] and

(Zt∧ζ∞ , t ≥ 0)
L
= (Zmin

t , t ≥ 0) under Pz for any z ∈ [0,∞).

The boundaries behaviors can be summarized as follows

Condition Boundary of U Boundary of Z

E =∞ 0 exit ∞ entrance

E <∞, 0 ≤ 2λ/c < 1 0 regular (absorbing) ∞ regular (reflecting)

2λ/c ≥ 1 0 entrance ∞ exit∫∞ dx
Ψ(x) <∞ ∞ entrance 0 exit∫∞ dx
Ψ(x) =∞ ∞ natural 0 natural

Table: Boundaries of Z and boundaries of U

→ A duality relation for entrance and exit laws for Markov
processes, Cox, Rösler: SPA 84
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Infinity as an entrance boundary: E =∞

With Lex(z) = Aez(x), and E =∞, a duality result of Ethier
and Kurtz yields:

Ez [e−xZ
min
t ] = Ex [e−zUt ], z ∈ [0,∞), x ∈ (0,∞).

Set Ptex(z) := Ez [e−xZ
min
t ] for z ∈ [0,∞[. When E =∞,

since 0 is an exit of U then

Ptex(∞) := lim
z→∞

Ez [e−xZ
min
t ] = Px(Ut = 0) = Px(τ0 ≤ t) > 0.

One can check that PtCb ⊂ Cb, x 7→ Px(τ0 ≤ t) is the
Laplace transform of an entrance law and (Pt , t ≥ 0) is a
Feller semigroup.

Theorem (Infinity as entrance boundary)

The process (Zt , t ≥ 0) such that for all t ≥ 0, all z ∈ [0,∞] and
x ∈ [0,∞) Ez(e−xZt ) = Ex(e−zUt ) is Feller and has ∞ as entrance
boundary
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Example

Consider α ∈ (0, 2], α 6= 1 and Ψ(z) = (α− 1)zα, then E =∞
and ∞ is an entrance boundary. For any t ≥ 0, z ∈ [0,∞] and
x ∈ [0,∞[

Ez(e−xZt ) = Ex(e−zUt ) with dUt =
√
cUtdBt + (1− α)Uα

t dt,

the boundary 0 of (Ut , t ≥ 0) is an exit. Note that when
α ∈ (0, 1), the CSBP without competition explodes, so that here
competition prevents explosion.
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Infinity as regular reflecting boundary: E <∞ and
0 ≤ 2λ

c < 1

Given Ψ and k ≥ 1, define πk = π|]0,k[ + (π̄(k) + λ)δk and a
branching mechanism Ψk by

Ψk(z) :=
σ2

2
z2 + γz +

∫ ∞
0

(
e−zx − 1 + zx1x∈(0,1)

)
πk(dx).

Call (Z
(k)
t , t ≥ 0) the càdlàg logistic CSBP with mechanism Ψk

and ∞ as entrance boundary.

Theorem (Infinity as regular reflecting boundary)

Assume E <∞ and 0 ≤ 2λ
c < 1 (Z

(k)
t , t ≥ 0) =⇒ (Zt , t ≥ 0) a

Feller process extending (Zmin
t , t ≥ 0), with ∞ regular reflecting,

such that for all t ≥ 0, all z ∈ [0,∞] and x ∈ [0,∞),

Ez(e−xZt ) = Ex(e−zU
0
t )

where (U0
t , t ≥ 0) is solution to (?) with 0 regular absorbing.
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Infinity as exit boundary: 2λ
c ≥ 1

Theorem (Infinity as exit boundary)

Assume 2λ
c ≥ 1 then 0 is an entrance for (Ut , t ≥ 0),

(Z
(k)
t , t ≥ 0) =⇒ (Zt , t ≥ 0) a Feller process, extending

(Zmin
t , t ≥ 0), with ∞ exit and for all t ≥ 0, all z ∈ [0,∞] and

x ∈ (0,∞),
Ez(e−xZt ) = Ex(e−zUt ).

E =∞ E <∞, λ = 0 0 < 2λ
c < 1 2λ

c ≥ 1

t t tt

Zt ZtZt Zt(a) (b) (c) (d)

Figure: Symbolic representation of the four behaviors at ∞.
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Proposition

If E <∞ and 0 ≤ 2λ
c < 1 then ∞ is regular for itself, that is

S∞ := inf{t > 0,Zt =∞} is such that P∞(S∞ = 0) = 1.

In particular, there are infinitely many small excursions from ∞,
and a local time at ∞.

Example (Squared Bessel processes)

Let λ > 0 and π ≡ 0 in order that Ψ(x) = −λ for all x ≥ 0.

If 2λ
c < 1 then ∞ is regular reflecting and

Ez(e−xZt ) = Ex(e−zU
0
t ) with dU0

t =
√

cU0
t dBt + λdt and 0

regular absorbing.

If 2λ
c ≥ 1 then ∞ is an exit and

Ez(e−xZt ) = Ex(e−zUt ) with dUt =
√
cUtdBt + λdt, and 0 is

an entrance.

→Fast-fragmentation-coalescence process, Kyprianou et al. AoP17
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Example with continuous explosion and a phase transition
between entrance and regular.

Example

Consider α > 0, β > 0 and set π(du) = α
u(log u)β+11{u≥2}du.

i) If β = 1 and 2α
c ≤ 1/2 then E =∞ and ∞ is an entrance

boundary.

ii) If β = 1 and 2α
c > 1/2 then E <∞ and ∞ is a regular

reflecting boundary.

iii) If β ∈]0, 1[, then E <∞ and ∞ is a regular reflecting
boundary.
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Infinity as reflecting or exit boundary: sketch of proof.

Assume E <∞. Set (U
(k)
t , t ≥ 0) the Ψk -generalized Feller

diffusion (with 0 exit):

Ez [e−xZ
(k)
t ] = Ex [e−zU

(k)
t ].

For all x , Ψk+1(x) ≤ Ψk(x) so by the comparison theorem:

U
(k+1)
t ≥ U

(k)
t for all t a.s. Thus a.s. for all t, U

(k)
t → U

(∞)
t .

||A(k)f −Af ||∞ → 0 for any f ∈ C 2
c . Thus (U

(∞)
t , t ≤ τ∞)

with τ∞ := inf{t;U
(∞)
t = 0}, has the same law as the

minimal diffusion with generator A and Px(τ∞ <∞) > 0 iff
2λ
c < 1.

U
(∞)
t+τ∞ = limU

(k)
t+τ∞ = 0 since τ∞ ≥ τ (k) and 0 is an exit of

(U
(k)
t , t ≥ 0). Then (U

(∞)
t , t ≥ 0) has 0 regular absorbing if

2λ
c < 1 or entrance if 2λ

c ≥ 1.

Conclusion: if 2λ
c < 1 then Ex [e−zU

(k)
t ] −→

k→∞
Ex [e−zU

0
t ].
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Let (P
(k)
t , t ≥ 0) the semi-group of (Z

(k)
t , t ≥ 0). Set

Ptex(z) := lim
k→∞

P
(k)
t ex(z) = Ex [e−zU

(∞)
t ].

By Stone-Weierstrass: PtCb ⊂ Cb. One has

||P(k)
t ex − Ptex ||∞ = sup

z∈[0,∞]

(
Ex [e−zU

(k)
t ]− Ex [e−zU

(∞)
t ]
)
−→
k→∞

0

By Stone-Weierstrass: ||P(k)
t f − Pt f ||∞ −→ 0 for any f ∈ Cb. We

deduce from this, that:

(Pt , t ≥ 0) is a semigroup with the Feller property.

Ethier-Kurtz (Thm 2.5 p167): (Z
(k)
t , t ≥ 0) =⇒ (Zt , t ≥ 0)

Set (Zt , t ≥ 0) the Markov process on [0,∞] with semigroup
(Pt , t ≥ 0). One has

Ez [e−xZt ] = Ex [e−zU
(∞)
t ].

It remains to show that (Zt , t ≥ 0) is an extension of (Zmin
t , t ≥ 0).
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For any f ∈ C 2
c , ||L(k)f − Lf ||∞ → 0. Therefore:(

f (Zt)−
∫ t

0
Lf (Zs)ds, t ≥ 0

)
is a martingale.

Stopping at time ζ∞ yields that(
f (Zt∧ζ∞)−

∫ t

0
Lf (Zs∧ζ∞)ds, t ≥ 0

)
is a martingale

Thus (Zt∧ζ∞ , t ≥ 0) solves (MP) and by uniqueness, has the same
law as (Zmin

t , t ≥ 0).

Conclusion: when E <∞, ∞ is accessible and

E∞[e−xZt ] = Px(τ0 ≤ t) > 0 if 2λ
c < 1: ∞ is regular.

E∞[e−xZt ] = Px(τ0 ≤ t) = 0, if 2λ
c ≥ 1, ∞ is an exit.

If 2λ
c < 1, since 0 is regular absorbing then for any z ∈ [0,∞],

Pz(Zt <∞) = E0+[e−zU
0
t ] = 1 and ∞ is reflecting.
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Remarks and open questions

→ Duality can be used to characterize the long-term behavior
(extinction for instance), and can be used to compute the
Laplace transform of the stationary law when it exists.

? The discrete-state space remains unclear. In this case, the
process (Zt , t ≥ 0) corresponds to the number of fragments
in some exchangeable coalescence-fragmentation
processes with Kingman coalescence (Berestycki EJP 04).
Accessibility of ∞ is more involved. See Gonzales-Casanova et
al. (17+) for a study of a class of discrete branching processes
with interactions by duality.

? No information about the local time at ∞ so far.

? Can we use duality for a sticky boundary?

? Can we use duality for studying the logistic process
conditioned on the non-extinction?

Thank you for your attention
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Corollary (Stationarity)

Assume

Ψ(z) = −λ− δz −
∫ ∞

0
(1− e−zu)π(du)

with δ ≥ 0,
∫∞

0 (1 ∧ u)π(du) <∞ and 0 ≤ 2λ
c < 1. Set the

condition

(A) : (δ = 0 and π̄(0) + λ ≤ c/2).

- If (A) holds then (Zt , t ≥ 0) converges in probab. to 0.

- If (A) is not satisfied then (Zt , t ≥ 0) converges in law
towards the distribution carried over ( 2δ

c ,∞) whose Laplace
transform is

x ∈ R+ 7→ E[e−xZ∞ ] :=

∫∞
x exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy∫∞

0 exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy
.
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Remark

The condition (A) is not satisfied if and only if at least one of the
following holds

lim
u→∞

Ψ(u)
u = −δ 6= 0, π((0, 1)) =∞, π̄(0) + λ > c

2 .

This already appears in Lambert 2005 with λ = 0 and a moment
assumption.

Proof.

The condition not (A) is the NSC for (U0
t , t ≥ 0) to have a

positive probability to escape to ∞:

Ez [e−xZt ] = Ex [e−zU
0
t ] −→

t→∞
Px(τ0 < τ∞) =

s(∞)− s(x)

s(∞)− s(0)
,

where s is the scale function associated to A.
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Theorem (Long-term behaviors, 0 ≤ 2λ
c < 1)

Consider (Zt , t ≥ 0) the process started from z ∈ (0,∞).

1) If 0 ≤ 2λ
c < 1 and Ψ(z) ≥ 0 for some z > 0 then

1-1) If
∫∞ du

Ψ(u) =∞, then Zt > 0 for any t ≥ 0 a.s. and Zt −→
t→∞

0
a.s.

1-2) If
∫∞ du

Ψ(u) <∞, then (Zt , t ≥ 0) get absorbed at 0 in finite

time almost-surely.

E =∞ t t tt

Zt ZtZt Zt

∫∞ 1
Ψ <∞

E =∞∫∞ 1
Ψ =∞

0 ≤ 2λ
c < 1 0 ≤ 2λ

c < 1

E <∞∫∞ 1
Ψ <∞

E <∞∫∞ 1
Ψ =∞

Figure: Representation of the two behaviors at 0 in the non-subordinator
case with ∞ entrance or reflecting.
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Theorem (Long-term behaviors, 2λ
c ≥ 1)

2) If 2λ
c ≥ 1 and Ψ(z) < 0 for all z > 0 then (Zt , t ≥ 0) get

absorbed at ∞ in finite time almost-surely.

3) If 2λ
c ≥ 1 and Ψ(z) ≥ 0 for some z > 0 then

Pz(Zt −→
t→∞

0) = 1− Pz(ζ∞ <∞) > 0 and Zt > 0 for any

t ≥ 0 a.s iff
∫∞ du

Ψ(u) =∞.
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