Continuous-State Branching Processes with Competition Duality and Reflection at Infinity

Clément Foucart Université Paris 13

Workshop on Branching Processes and their Applications, Badajoz 13/04/2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Logistic CSBPs.	Main results 00000000000	Sketch of proof	References	Long-term behavior
Introduc	tion				

Consider a random continuous population with heuristically the following dynamics:

- Each individual reproduces independently from the others, with a same law (as in a Continuous-State Branching Process)
- At constant rate *c*, a "pair" of individuals is picked at random and one kills the other (quadratic competition).

The total size of the population is called **logistic CSBP** (Lambert AAP 05). In the case without jumps, the process is the logistic Feller diffusion :

$$\mathrm{d}Z_t = \sigma \sqrt{Z_t} \mathrm{d}B_t + \gamma Z_t \mathrm{d}t - \frac{c}{2} Z_t^2 \mathrm{d}t. \tag{1}$$

Aim: study these processes with a general branching mechanism Ψ and classify the boundaries

Introduction Logistic CSBPs. Main results Sketch of proof References Long-term behavior CSBPs without competition

A general branching mechanism takes the form

$$\Psi(z) = -\lambda + \frac{\sigma^2}{2}z^2 + \gamma z + \int_0^{+\infty} \left(e^{-zx} - 1 + zx\mathbb{1}_{\{x \le 1\}}\right) \pi(\mathrm{d}x)$$

where

- π : a measure over $(0,\infty)$ s.t. $\int_0^\infty (1\wedge x^2)\pi(\mathrm{d} x)<\infty$
- λ ≥ 0: a killing rate, understood as a jump to ∞ at rate λz
 γ ∈ ℝ: a deterministic drift, σ ≥ 0, the Feller diffusion part Let (Z_t, t ≥ 0) be a Ψ-CSBP

$$\mathbb{E}_{z}[e^{-xZ_{t}}] = e^{-zu_{t}(x)}$$
, with $\frac{\mathrm{d}u_{t}(x)}{\mathrm{d}t} = -\Psi(u_{t}(x))$

- It explodes (reaches ∞) with positive probability iff $\int_0 \frac{\mathrm{d}u}{|\Psi(u)|} < \infty.$
- It reaches 0 with positive probability iff $\int_{|\Psi(u)|}^{\infty} \frac{\mathrm{d}u}{|\Psi(u)|} < \infty$.

Introduction	Logistic CSBPs.	Main results 00000000000	Sketch of proof	References	Long-term behavior

Questions

- (1) Are there strong enough reproduction laws to face the competition and explosion to occur (∞ accessible)?
- (2) If the process does not explode, is it possible to start it from infinity ? (∞ entrance.)
- (3) If the process explodes, is the competition strong enough to push back the process in [0,∞) or not ? (∞ regular reflecting or exit.)

(4) What are the possible long-term behaviors? Is there a stationary law?

Reflecting means that $\lambda(\{t > 0; Z_t = \infty\}) = 0$.

Minimal Logistic CSBPs: definition

Denote by $\ensuremath{\mathcal{G}}$ the extended generator of a CSBP and set

$$\mathcal{L}f(z) := \mathcal{G}f(z) - \frac{c}{2}z^2f'(z).$$

Definition

A minimal logistic continuous-state branching process is a càdlàg Markov process $(Z_t^{min}, t \ge 0)$ on $[0, \infty]$ with 0 and ∞ absorbing, satisfying (MP). For any function $f \in C_c^2((0, \infty))$, the process

$$t \in [0,\zeta) \mapsto f\left(Z_t^{min}\right) - \int_0^t \mathcal{L}f\left(Z_s^{min}\right) \, \mathrm{d}s \qquad (\mathsf{MP})$$

is a martingale under each \mathbb{P}_z , with $\zeta := \inf\{t \ge 0; Z_t^{\min} \notin (0, \infty)\}$.

By minimal process, we mean that if it explodes, the process remains at ∞ from its explosion time $\zeta_{\infty} := \inf\{t \ge 0, Z_t^{\min} = \infty\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal Logistic CSBP

Theorem

There exists a unique minimal logistic CSBP.

Theorem (Accessibility of ∞)

Assume c > 0. The boundary ∞ is inaccessible for $(Z_t^{min}, t \ge 0)$ if and only if

$$\mathcal{E} := \int_0^\theta \frac{1}{x} \exp\left(\frac{2}{c} \int_x^\theta \frac{\Psi(u)}{u} \,\mathrm{d}u\right) \mathrm{d}x = \infty,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some arbitrary $\theta > 0$.

Construction of minimal logistic CSBPs

Consider $(Y_t, t \ge 0)$ a sp-Lévy process with Laplace exponent $-\Psi$, killed at ∞ at an independent exponential r.v. \mathbb{e}_{λ} with parameter $\lambda := -\Psi(0) \ge 0$. Set $(R_t, t \ge 0)$ the generalized Ornstein-Uhlenbeck process defined by

$$R_t = z + Y_t - rac{c}{2} \int_0^t R_s \mathrm{d}s.$$

Set $\sigma_0 := \inf\{t \ge 0, R_t < 0\}$, $\theta_t := \int_0^{t \wedge \sigma_0} \frac{ds}{R_s}$ and its right-inverse $t \mapsto C_t := \inf\{u \ge 0; \theta_u > t\} \in [0, \infty]$. Let

$$Z_t^{\min} = \begin{cases} R_{C_t} & 0 \le t < \theta_{\infty} \\ 0 & t \ge \theta_{\infty} \text{ and } \sigma_0 < \infty \\ \infty & t \ge \theta_{\infty} \text{ and } \sigma_0 = \infty. \end{cases}$$

 $(Z_t^{\min}, t \ge 0)$ is a minimal logistic continuous-state branching process.

Introduction Logistic CSBPs. Main results oceoocoocoo Explosion criterion

The process $(Z_t^{\min}, t \ge 0)$ hit ∞ if and only if $\sigma_0 = \infty$ and

$$heta_{\infty} = \int_0^{\infty} \frac{\mathrm{d}s}{R_s} < \infty.$$

Shiga (PTRF 90) shows that $(R_s, s \ge 0)$ is recurrent if $\mathcal{E} = \infty$ and transient if $\mathcal{E} < \infty$:

- if $(R_s, s \ge 0)$ is recurrent then $\int_0^\infty \frac{\mathrm{d}s}{R_s} = \infty$ on $\sigma_0 = \infty$.
- if $(R_s, s \ge 0)$ is transient, one can show that

$$\mathbb{E}_{z}\left[\int_{0}^{\infty}\frac{\mathrm{d}s}{R_{s}};\sigma_{0}=\infty\right]<\infty$$

from

$$\mathbb{E}_{z}(e^{-\theta R_{s}}) = \exp\left(-\theta e^{-\frac{c}{2}s}z + \int_{0}^{s} \Psi(e^{-\frac{c}{2}u}\theta) \mathrm{d}u\right).$$

Duality of generators

For all $x\in [0,\infty[$ and $z\in [0,\infty[$, let $e_x(z):=e^{-xz}=e_z(x),$ then

Lemma (Generator duality)

$$\mathcal{L}e_x(z) = \mathcal{A}e_z(x)$$
 with $\mathcal{A}f(x) = \frac{c}{2}xf''(x) - \Psi(x)f'(x)$.

Proof.

$$\mathcal{L}e_{x}(z) = \Psi(x)ze_{x}(z) + \frac{c}{2}xz^{2}e_{x}(z) = -\Psi(x)\frac{\partial e_{z}(x)}{\partial x} + \frac{c}{2}x\frac{\partial^{2}e_{z}(x)}{\partial x^{2}}.$$

There exists a unique strong solution to

$$\mathrm{d}U_t = \sqrt{cU_t}\mathrm{d}B_t - \Psi(U_t)\mathrm{d}t \quad (\star),$$

up to $\tau := \inf\{t > 0, U_t \notin (0, \infty)\}$ (Ψ is locally lipschitz on $(0, \infty)$). However, 0 can be exit, regular or entrance and there is not a unique semi-group associated to \mathcal{A} .

Main results ○○○○●○○○○○○ Sketch of proof

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the sequel, we say that a process $(Z_t, t \ge 0)$ extends the minimal process if $(Z_t, t \ge 0)$ takes its values in $[0, \infty]$ and $(Z_{t \land \zeta_{\infty}}, t \ge 0) \stackrel{\mathcal{L}}{=} (Z_t^{\min}, t \ge 0)$ under \mathbb{P}_z for any $z \in [0, \infty)$.

The boundaries behaviors can be summarized as follows

Condition	Boundary of U	Boundary of Z	
$\mathcal{E} = \infty$	0 exit	∞ entrance	
$\mathcal{E} < \infty$, $0 \leq 2\lambda/c < 1$	0 regular (absorbing)	∞ regular (reflecting)	
$2\lambda/c \geq 1$	0 entrance	∞ exit	
$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{\Psi(x)} < \infty$	∞ entrance	0 exit	
$\int_{0}^{\infty} \frac{\mathrm{d}x}{\Psi(x)} = \infty$	∞ natural	0 natural	

Table: Boundaries of Z and boundaries of U

 \rightarrow A duality relation for entrance and exit laws for Markov processes, Cox, Rösler: SPA 84

Infinity as an entrance boundary: $\mathcal{E} = \infty$

• With $\mathcal{L}e_x(z) = \mathcal{A}e_z(x)$, and $\mathcal{E} = \infty$, a duality result of Ethier and Kurtz yields:

$$\mathbb{E}_{z}[e^{-xZ_{t}^{\min}}]=\mathbb{E}_{x}[e^{-zU_{t}}], \ z\in[0,\infty), x\in(0,\infty).$$

• Set $P_t e_x(z) := \mathbb{E}_z[e^{-xZ_t^{\min}}]$ for $z \in [0, \infty[$. When $\mathcal{E} = \infty$, since 0 is an **exit** of U then

$$P_t e_x(\infty) := \lim_{z \to \infty} \mathbb{E}_z[e^{-xZ_t^{\min}}] = \mathbb{P}_x(U_t = 0) = \mathbb{P}_x(\tau_0 \le t) > 0.$$

 One can check that P_tC_b ⊂ C_b, x → P_x(τ₀ ≤ t) is the Laplace transform of an **entrance law** and (P_t, t ≥ 0) is a Feller semigroup.

Theorem (Infinity as entrance boundary)

The process $(Z_t, t \ge 0)$ such that for all $t \ge 0$, all $z \in [0, \infty]$ and $x \in [0, \infty)$ $\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t})$ is Feller and has ∞ as entrance boundary

Introduction	Logistic CSBPs.	Main results ○○○○○●○○○○	Sketch of proof	References	Long-term behavior

Example

Consider $\alpha \in (0,2]$, $\alpha \neq 1$ and $\Psi(z) = (\alpha - 1)z^{\alpha}$, then $\mathcal{E} = \infty$ and ∞ is an **entrance** boundary. For any $t \ge 0$, $z \in [0,\infty]$ and $x \in [0,\infty[$

$$\mathbb{E}_{z}(e^{-xZ_{t}}) = \mathbb{E}_{x}(e^{-zU_{t}}) \text{ with } \mathrm{d}U_{t} = \sqrt{cU_{t}}\mathrm{d}B_{t} + (1-\alpha)U_{t}^{\alpha}\mathrm{d}t,$$

the boundary 0 of $(U_t, t \ge 0)$ is an **exit**. Note that when $\alpha \in (0, 1)$, the CSBP without competition explodes, so that here competition prevents explosion.

Given Ψ and $k \ge 1$, define $\pi_k = \pi_{|]0,k[} + (\bar{\pi}(k) + \lambda)\delta_k$ and a branching mechanism Ψ_k by

$$\Psi_k(z) := \frac{\sigma^2}{2} z^2 + \gamma z + \int_0^\infty \left(e^{-zx} - 1 + zx \mathbb{1}_{x \in (0,1)} \right) \pi_k(\mathrm{d} x).$$

Call $(Z_t^{(k)}, t \ge 0)$ the càdlàg logistic CSBP with mechanism Ψ_k and ∞ as entrance boundary.

Theorem (Infinity as regular reflecting boundary)

Assume $\mathcal{E} < \infty$ and $0 \le \frac{2\lambda}{c} < 1$ $(Z_t^{(k)}, t \ge 0) \Longrightarrow (Z_t, t \ge 0)$ a Feller process extending $(Z_t^{min}, t \ge 0)$, with ∞ regular reflecting, such that for all $t \ge 0$, all $z \in [0, \infty]$ and $x \in [0, \infty)$,

$$\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t^0})$$

where $(U_t^0, t \ge 0)$ is solution to (\star) with 0 regular absorbing.

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Logistic CSBPs.} & \mbox{Main results} & \mbox{Sketch of proof} & \mbox{References} & \mbox{Long-term behavior} \\ \hline \mbox{Infinity as exit boundary: } \frac{2\lambda}{c} \geq 1 \end{array}$

Theorem (Infinity as exit boundary)

Assume
$$\frac{2\lambda}{c} \ge 1$$
 then 0 is an **entrance** for $(U_t, t \ge 0)$,
 $(Z_t^{(k)}, t \ge 0) \Longrightarrow (Z_t, t \ge 0)$ a Feller process, extending
 $(Z_t^{min}, t \ge 0)$, with ∞ **exit** and for all $t \ge 0$, all $z \in [0, \infty]$ and
 $x \in (0, \infty)$,
 $\mathbb{P}_{t}(z_t^{-x}) = \mathbb{P}_{t}(z_t^{-x})$

$$\mathbb{E}_z(e^{-xZ_t})=\mathbb{E}_x(e^{-zU_t}).$$

Figure: Symbolic representation of the four behaviors at ∞ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

If $\mathcal{E} < \infty$ and $0 \le \frac{2\lambda}{c} < 1$ then ∞ is regular for itself, that is $S_{\infty} := \inf\{t > 0, Z_t = \infty\}$ is such that $\mathbb{P}_{\infty}(S_{\infty} = 0) = 1$.

In particular, there are infinitely many small excursions from $\infty,$ and a local time at $\infty.$

Example (Squared Bessel processes)

Let $\lambda > 0$ and $\pi \equiv 0$ in order that $\Psi(x) = -\lambda$ for all $x \ge 0$.

• If $\frac{2\lambda}{c} < 1$ then ∞ is regular reflecting and $\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t^0})$ with $\mathrm{d}U_t^0 = \sqrt{cU_t^0}\mathrm{d}B_t + \lambda\mathrm{d}t$ and 0 regular absorbing.

• If
$$\frac{2\lambda}{c} \ge 1$$
 then ∞ is an **exit** and $\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t})$ with $\mathrm{d}U_t = \sqrt{cU_t}\mathrm{d}B_t + \lambda\mathrm{d}t$, and 0 is an **entrance**.

 $\rightarrow \textit{Fast-fragmentation-coalescence process, Kyprianou et al. AoP17$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Logistic CSBPs.	Main results	Sketch of proof	References	Long-term behavior
		0000000000			

Example with **continuous explosion** and a phase transition between entrance and regular.

Example

Consider $\alpha > 0$, $\beta > 0$ and set $\pi(du) = \frac{\alpha}{u(\log u)^{\beta+1}} \mathbb{1}_{\{u \ge 2\}} du$.

- i) If $\beta = 1$ and $\frac{2\alpha}{c} \le 1/2$ then $\mathcal{E} = \infty$ and ∞ is an entrance boundary.
- ii) If $\beta = 1$ and $\frac{2\alpha}{c} > 1/2$ then $\mathcal{E} < \infty$ and ∞ is a regular reflecting boundary.
- iii) If $\beta \in]0,1[$, then $\mathcal{E} < \infty$ and ∞ is a regular reflecting boundary.

Infinity as reflecting or exit boundary: sketch of proof.

Assume $\mathcal{E} < \infty$. Set $(U_t^{(k)}, t \ge 0)$ the Ψ_k -generalized Feller diffusion (with 0 exit):

$$\mathbb{E}_{z}[e^{-xZ_{t}^{(k)}}]=\mathbb{E}_{x}[e^{-zU_{t}^{(k)}}].$$

• For all x, $\Psi_{k+1}(x) \leq \Psi_k(x)$ so by the comparison theorem: $U_t^{(k+1)} > U_t^{(k)}$ for all t a.s. Thus a.s. for all t, $U_t^{(k)} \to U_t^{(\infty)}$. • $||\mathcal{A}^{(k)}f - \mathcal{A}f||_{\infty} \to 0$ for any $f \in C_c^2$. Thus $(U_t^{(\infty)}, t < \tau^{\infty})$ with $\tau^{\infty} := \inf\{t: U_{\star}^{(\infty)} = 0\}$, has the same law as the minimal diffusion with generator \mathcal{A} and $\mathbb{P}_{x}(\tau^{\infty} < \infty) > 0$ iff $\frac{2\lambda}{2} < 1.$ • $U_{t+\tau^{\infty}}^{(\infty)} = \lim U_{t+\tau^{\infty}}^{(k)} = 0$ since $\tau^{\infty} \ge \tau^{(k)}$ and 0 is an exit of $(U_t^{(k)}, t \ge 0)$. Then $(U_t^{(\infty)}, t \ge 0)$ has 0 regular absorbing if $\frac{2\lambda}{2} < 1$ or entrance if $\frac{2\lambda}{2} \geq 1$.

 $\text{Conclusion: if } \frac{2\lambda}{c} < 1 \text{ then } \mathbb{E}_{\mathbf{x}}[e^{-zU_t^{(k)}}] \xrightarrow[k \to \infty]{} \mathbb{E}_{\mathbf{x}}[e^{-zU_t^0}].$

By Stone-Weierstrass: $P_t C_b \subset C_b$. One has

$$||P_t^{(k)}e_x - P_te_x||_{\infty} = \sup_{z \in [0,\infty]} \left(\mathbb{E}_x[e^{-zU_t^{(k)}}] - \mathbb{E}_x[e^{-zU_t^{(\infty)}}] \right) \underset{k \to \infty}{\longrightarrow} 0$$

By Stone-Weierstrass: $||P_t^{(k)}f - P_tf||_{\infty} \longrightarrow 0$ for any $f \in C_b$. We deduce from this, that:

• $(P_t, t \ge 0)$ is a semigroup with the Feller property.

• Ethier-Kurtz (Thm 2.5 p167): $(Z_t^{(k)}, t \ge 0) \Longrightarrow (Z_t, t \ge 0)$ Set $(Z_t, t \ge 0)$ the Markov process on $[0, \infty]$ with semigroup $(P_t, t \ge 0)$. One has

$$\mathbb{E}_{z}[e^{-xZ_{t}}] = \mathbb{E}_{x}[e^{-zU_{t}^{(\infty)}}].$$

It remains to show that $(Z_t, t \ge 0)$ is an extension of $(Z_t^{\min}, t \ge 0)$.

Introduction

For any $f \in \mathcal{C}^2_c$, $||\mathcal{L}^{(k)}f - \mathcal{L}f||_\infty o 0$. Therefore:

$$\left(f(Z_t) - \int_0^t \mathcal{L}f(Z_s) \mathrm{d}s, t \geq 0
ight)$$
 is a martingale.

Stopping at time ζ_∞ yields that

$$\left(f(Z_{t\wedge\zeta_{\infty}})-\int_{0}^{t}\mathcal{L}f(Z_{s\wedge\zeta_{\infty}})\mathrm{d}s,t\geq0
ight)$$
 is a martingale

Thus $(Z_{t \wedge \zeta_{\infty}}, t \ge 0)$ solves **(MP)** and by uniqueness, has the same law as $(Z_t^{\min}, t \ge 0)$.

Conclusion: when $\mathcal{E} < \infty$, ∞ is accessible and

- $\mathbb{E}_{\infty}[e^{-xZ_t}] = \mathbb{P}_x(\tau_0 \le t) > 0$ if $\frac{2\lambda}{c} < 1$: ∞ is regular.
- $\mathbb{E}_{\infty}[e^{-xZ_t}] = \mathbb{P}_x(\tau_0 \leq t) = 0$, if $\frac{2\lambda}{c} \geq 1$, ∞ is an exit.
- If $\frac{2\lambda}{c} < 1$, since 0 is regular absorbing then for any $z \in [0, \infty]$, $\mathbb{P}_z(Z_t < \infty) = \mathbb{E}_{0+}[e^{-zU_t^0}] = 1$ and ∞ is reflecting.

- $\rightarrow\,$ Duality can be used to characterize the long-term behavior (extinction for instance), and can be used to compute the Laplace transform of the stationary law when it exists.
 - ? The discrete-state space remains unclear. In this case, the process $(Z_t, t \ge 0)$ corresponds to the number of fragments in some exchangeable coalescence-fragmentation processes with Kingman coalescence (Berestycki EJP 04). Accessibility of ∞ is more involved. See Gonzales-Casanova et al. (17+) for a study of a class of discrete branching processes with interactions by duality.
 - ? No information about the local time at ∞ so far.
 - ? Can we use duality for a sticky boundary?
 - ? Can we use duality for studying the logistic process conditioned on the non-extinction?

Thank you for your attention

Introduction	Logistic CSBPs.	Main results 00000000000	Sketch of proof	References	Long-term behavior

- W. Feller, *Diffusion processes in one dimension*, AMS (1954).
- A. E. Kyprianou, S. Pagett, T. Rogers, and J. Schweinsberg, *A phase transition in excursions from infinity of the "fast" fragmentation-coalescence process*, Ann. Probab. (2017).
- A. Lambert, *The branching process with logistic growth*, Ann. Appl. Probab. **15** (2005), no. 2, 1506–1535.
- T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Probab. Theory Related Fields (1990).
- J. T. Cox and U. Rösler, A duality relation for entrance and exit laws for Markov processes, SPA (1984).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main results

Sketch of proof

References

Long-term behavior

Corollary (Stationarity)

Assume

$$\Psi(z) = -\lambda - \delta z - \int_0^\infty (1 - e^{-zu}) \pi(\mathrm{d} u)$$

with $\delta \ge 0$, $\int_0^\infty (1 \wedge u) \pi(du) < \infty$ and $0 \le \frac{2\lambda}{c} < 1$. Set the condition

(A) :
$$(\delta = 0 \text{ and } \overline{\pi}(0) + \lambda \leq c/2).$$

- If (A) holds then $(Z_t, t \ge 0)$ converges in probab. to 0.
- If (A) is not satisfied then $(Z_t, t \ge 0)$ converges in law towards the distribution carried over $(\frac{2\delta}{c}, \infty)$ whose Laplace transform is

$$x \in \mathbb{R}_+ \mapsto \mathbb{E}[e^{-xZ_{\infty}}] := \frac{\int_x^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}{\int_0^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}$$

Remark

The condition (A) is not satisfied if and only if at least one of the following holds

$$\lim_{u o\infty} rac{\Psi(u)}{u} = -\delta
eq 0, \ \pi((0,1)) = \infty, \ ar{\pi}(0) + \lambda > rac{c}{2}.$$

This already appears in Lambert 2005 with $\lambda = 0$ and a moment assumption.

Proof.

The condition **not** (A) is the NSC for $(U_t^0, t \ge 0)$ to have a positive probability to escape to ∞ :

$$\mathbb{E}_{z}[e^{-xZ_{t}}] = \mathbb{E}_{x}[e^{-zU_{t}^{0}}] \underset{t o \infty}{\longrightarrow} \mathbb{P}_{x}(au_{0} < au_{\infty}) = rac{s(\infty) - s(x)}{s(\infty) - s(0)},$$

where s is the scale function associated to A.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Figure: Representation of the two behaviors at 0 in the non-subordinator case with ∞ entrance or reflecting.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Logistic CSBPs.	Main results 00000000000	Sketch of proof	References	Long-term behavior

Theorem (Long-term behaviors, $rac{2\lambda}{c}\geq 1$)

2) If
$$\frac{2\lambda}{c} \ge 1$$
 and $\Psi(z) < 0$ for all $z > 0$ then $(Z_t, t \ge 0)$ get absorbed at ∞ in finite time almost-surely.

3) If
$$\frac{2\lambda}{c} \ge 1$$
 and $\Psi(z) \ge 0$ for some $z > 0$ then
 $\mathbb{P}_z(Z_t \xrightarrow[t \to \infty]{t \to \infty} 0) = 1 - \mathbb{P}_z(\zeta_\infty < \infty) > 0$ and $Z_t > 0$ for any
 $t \ge 0$ a.s iff $\int^\infty \frac{\mathrm{d}u}{\Psi(u)} = \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで