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Controlled Branching Processes

A Controlled Branching Process is a discrete-time stochastic growth population
model in which the individuals with reproductive capacity in each generation are
controlled. This branching model is well-suited for describing the probabilistic
evolution of populations in which, for various reasons of an environmental, social
or other nature, there is a mechanism that establishes the number of progenitors
who take part in each generation.
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Probability model

Definition (Yanev (1975))

Let {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} and {φn(k) : n, k = 0, 1, . . .} be two
independent families of non negative integer valued random variables which are
defined on the same probability space, (Ω,A,P).

(i) {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} are i.i.d. random variables whose
distribution is denoted by p = {pk}k≥0, pk = P[X01 = k], k ≥ 0.

(ii) For n = 0, 1, . . ., {φn(k) : k = 0, 1, . . .} are independent stochastic processes
with equal one-dimensional probability distributions, i.e., for each n,
pj(k) = P[φn(k) = j ], j , k ≥ 0.

The stochastic process {Zn}n≥0 defined as:

Z0 = N ≥ 0, Zn+1 =
φn(Zn)∑
i=1

Xni , n = 0, 1,
(∑0

1 = 0
)
,

is known as Controlled Branching Process (CBP) with random control
function.
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Probability model

Main parameters of the model

p = {pk}k≥0: offspring distribution or reproduction law.

m = E [X01]: offspring mean.

σ2 = Var [X01]: offspring variance.

Aim of the communication
To provide robust estimators for the offspring distribution

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 5 / 29



Probability model

Main parameters of the model

p = {pk}k≥0: offspring distribution or reproduction law.

m = E [X01]: offspring mean.

σ2 = Var [X01]: offspring variance.

Aim of the communication
To provide robust estimators for the offspring distribution

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 5 / 29



The problem

Motivation
The reproductive capacity of a small proportion of individuals can be
influenced by temporary events (presence of a disease with a low prevalence,
punctual changes on the environmental conditions, etc.).

Example: during the process of mammalian cell division, or mitosis, a mother cell
divides equally into two daughter cells, but it comes to cancer, mother cells may
be far more prolific.

Fig: Cell division into five daughter cells. Image credit: UCLA Engineering.
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The problem

In the frame of the branching processes, robust estimation:

By using weighted least trimmed estimation for BGWP

Stoimenova, V., Atanasov, D. and Yanev, N. (2004) Robust
estimation and simulation of branching processes. Comptes rendus de
l’Acadèmie bulgare des sciences, 57(5), 19–22.

By considering minimum Hellinger distance estimation in a frecuentist
context for BGWP

Sriram, T. N. and Vidyashankar, A. N. (2000) Minimum
Hellinger distance estimation for supercritical Galton–Watson processes.
Statistics and Probability Letters, 50, 331–342.

By considering disparity measures distance estimation in a frecuentist context
for CBP

González, M, Minuesa, C. and IP (2017) Minimum disparity
estimation controlled branching process. Electronic Journal of Statistics,
11(1),295–325.
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l’Acadèmie bulgare des sciences, 57(5), 19–22.

By considering minimum Hellinger distance estimation in a frecuentist
context for BGWP

Sriram, T. N. and Vidyashankar, A. N. (2000) Minimum
Hellinger distance estimation for supercritical Galton–Watson processes.
Statistics and Probability Letters, 50, 331–342.

By considering disparity measures distance estimation in a frecuentist context
for CBP
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The problem

Assumption

The offspring distribution belongs to a parametric family

Fθ = {pθ : θ ∈ Θ}, Θ ⊆ R,

that is, p = pθ0
, with θ0 ∈ Θ. Moreover

pk(θ1) = pk(θ2), ∀k ∈ N0 ⇒ θ1 = θ2,

identifiability condition.

Aim

In a Bayesian framework, to obtain robust estimators of θ0 given the
entire family tree.

Sample: Z∗n =
{
Zl(k) =

∑φl (Zl )
i=1 I{Xli=k} : k ≥ 0; l = 0, . . . , n − 1

}
.
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The problem

Likelihood function of θ based on Z∗n :

f (Z∗n |θ) =
n−1∏
l=0

φ∗l !∏∞
k=0 Zl(k)

∞∏
k=0

pk(θ)Zl (k)P[φl(zl) = φ∗l ].

Posterior density:

π(θ|Z∗n ) ∝ f (Z∗n |θ)π(θ) ∝ π(θ)
n−1∏
l=0

∞∏
k=0

pk(θ)Zl (k).

Bayesian point estimators

Expectation a posteriori (EAP):

θ∗n =

∫
Θ

θπ(θ|Z∗n )dθ.

Maximum a posteriori (MAP):

θ+
n = arg max

θ∈Θ
π(θ|Z∗n ).
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Simulated example

Parametric family:

Fθ = {G (θ) : θ ∈ (0, 1)}, G (θ) ≡ geometric distribution with parameter θ.

Mixture model for gross errors:

p(θ0, α, L) = (1− α)G (θ0) + αδL, θ0 = 0.3, α = 0.05, L = 11.

We have simulated 45 generations of a CBP:

Z0 = 1 individual.

Xij ∼ p(θ, α, L), for i = 0, 1, . . ., j = 1, . . ..

φn(k) ∼ P(kλ), with λ = 0.6, k ≥ 0.

m = 2.333 and σ2 = 7.778.
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Simulated example

Posterior density:

π(θ|Z∗n ) ∝ π(θ)
∞∏
k=0

n−1∏
l=0

pk(θ)Zl (k).
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Fig: Posterior density of θ at the generation 45 (left). Temporal evolution of the EAP and MAP estimates for
θ0 (right). Red lines represent the true value of the parameters and dashed lines represent the 95% HPD
interval.
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Bayesian robustness

Estimation via disparities
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González, M., Minuesa, C., I.P., Vidyashankar, A.N. (2017). Robust estimation in
controlled branching processes: Bayesian estimators via disparities.
arXiv:1802.05917.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 12 / 29



Bayesian robustness

It is easy to prove that

f (Z∗n |θ) ∝ exp

(
∆n−1

∞∑
k=0

p̂n,k log(pk(θ))

)
= exp (−∆n−1KL(p̂n, θ)) ,

where

∆n−1 =
n−1∑
l=0

φl(Zl)

p̂n,k =

∑n−1
l=0 Zl(k)

∆n−1
, k ≥ 0, (MLE of p based on Z∗n ).

KL(q, θ) =
∞∑
k=0

log

(
qk

pk(θ)

)
qk ,
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Bayesian robustness

Disparity measure

A disparity measure between q ∈ Γ and p(θ) ∈ Fθ is defined by:

D(q, θ) =
∞∑
k=0

G (δ(q, θ, k))pk(θ),

with G (·) a three times differentiable and strictly convex function on [−1,∞) with
G (0) = 0 and

δ(q, θ, k) =
qk

pk(θ)
− 1 (Pearson residual).

Examples of disparity measures

Disparity measure Notation G (δ)

Kullback-Leibler divergence KL(q, θ) (δ + 1) log(δ + 1)− δ

Squared Hellinger distance HD(q, θ) 2[(δ + 1)1/2 − 1]2

Negative exponential disparity NED(q, θ) exp(−δ)− 1 + δ
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Bayesian robustness

Posterior density:

π(θ|Z∗n ) ∝ exp (−∆n−1KL(p̂n, θ))π(θ).

D-Posterior density:

πn
D(θ|p̂n) ∝ exp (−∆n−1D(p̂n, θ))π(θ).

Expectation a posteriori (EAP):

θ∗n =

∫
Θ

θπ(θ|Z∗n )dθ.

Maximum a posteriori (MAP):

θ+
n = arg max

θ∈Θ
π(θ|Z∗n ).

Expectation D-a posteriori (EDAP):

θD∗n =

∫
Θ

θπn
D(θ|p̂n)dθ.

Maximum D-a posteriori (MDAP):

θD+
n = arg max

θ∈Θ
πn

D(θ|p̂n).
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Simulated example (Continuation)

HD-Posterior density: πHD(θ|p̂n) ∝ π(θ)e2∆n−1
∑∞

k=0(p̂n,kpk (θ))1/2
.

NED-Posterior density: πNED(θ|p̂n) ∝ π(θ)e
−∆n−1

∑∞
k=0

(
exp

{
−
(

p̂n,k
pk (θ)

−1

)}
−1

)
pk (θ)

.
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Fig: HD-Posterior density (left) and NED-Posterior density (right) of θ at the generation 45 (left). Red lines
represent the true value of the parameters and dashed lines represent the 95% HPD interval.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 16 / 29



Bayesian robustness

EDAP and MDAP functions, T n and T̃n

For (q, ω) ∈ Γ× Ω

T n(q)(ω) =

∫
Θ
θe−∆n−1(ω)D(q,θ)π(θ)dθ∫

Θ
e−∆n−1(ω)D(q,θ)π(θ)dθ

T̃n(q)(ω) = arg min
θ∈Θ

(∆n−1(ω)D(q, θ)− log(π(θ)))

Notice that θ∗Dn (ω) = T n(p̂n)(ω), and θ+D
n (ω) = T̃n(p̂n)(ω)

Under certain conditions it is proved that T n and T̃n random variables and
T n(·) is almost surely continuous on Γ̃ with respect to the l1-metric; that is,
qj → q in l1, then T n(qj)→ T n(q), as j →∞, with probability one.

The function T̃n(·) is continuous in q; that is, T̃n(qj)→ T̃n(q) with
probability one as j →∞, as qj → q in the sense that
supθ∈Θ |D(qj , θ)− D(q, θ)| → 0.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 17 / 29



Bayesian robustness

EDAP and MDAP functions, T n and T̃n

For (q, ω) ∈ Γ× Ω

T n(q)(ω) =

∫
Θ
θe−∆n−1(ω)D(q,θ)π(θ)dθ∫

Θ
e−∆n−1(ω)D(q,θ)π(θ)dθ

T̃n(q)(ω) = arg min
θ∈Θ

(∆n−1(ω)D(q, θ)− log(π(θ)))

Notice that θ∗Dn (ω) = T n(p̂n)(ω), and θ+D
n (ω) = T̃n(p̂n)(ω)

Under certain conditions it is proved that T n and T̃n random variables and
T n(·) is almost surely continuous on Γ̃ with respect to the l1-metric; that is,
qj → q in l1, then T n(qj)→ T n(q), as j →∞, with probability one.

The function T̃n(·) is continuous in q; that is, T̃n(qj)→ T̃n(q) with
probability one as j →∞, as qj → q in the sense that
supθ∈Θ |D(qj , θ)− D(q, θ)| → 0.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 17 / 29



Bayesian robustness

EDAP and MDAP functions, T n and T̃n

For (q, ω) ∈ Γ× Ω

T n(q)(ω) =

∫
Θ
θe−∆n−1(ω)D(q,θ)π(θ)dθ∫

Θ
e−∆n−1(ω)D(q,θ)π(θ)dθ

T̃n(q)(ω) = arg min
θ∈Θ

(∆n−1(ω)D(q, θ)− log(π(θ)))

Notice that θ∗Dn (ω) = T n(p̂n)(ω), and θ+D
n (ω) = T̃n(p̂n)(ω)

Under certain conditions it is proved that T n and T̃n random variables and
T n(·) is almost surely continuous on Γ̃ with respect to the l1-metric; that is,
qj → q in l1, then T n(qj)→ T n(q), as j →∞, with probability one.

The function T̃n(·) is continuous in q; that is, T̃n(qj)→ T̃n(q) with
probability one as j →∞, as qj → q in the sense that
supθ∈Θ |D(qj , θ)− D(q, θ)| → 0.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 17 / 29



Bayesian robustness

EDAP and MDAP functions, T n and T̃n

For (q, ω) ∈ Γ× Ω

T n(q)(ω) =

∫
Θ
θe−∆n−1(ω)D(q,θ)π(θ)dθ∫

Θ
e−∆n−1(ω)D(q,θ)π(θ)dθ

T̃n(q)(ω) = arg min
θ∈Θ

(∆n−1(ω)D(q, θ)− log(π(θ)))

Notice that θ∗Dn (ω) = T n(p̂n)(ω), and θ+D
n (ω) = T̃n(p̂n)(ω)

Under certain conditions it is proved that T n and T̃n random variables and
T n(·) is almost surely continuous on Γ̃ with respect to the l1-metric; that is,
qj → q in l1, then T n(qj)→ T n(q), as j →∞, with probability one.

The function T̃n(·) is continuous in q; that is, T̃n(qj)→ T̃n(q) with
probability one as j →∞, as qj → q in the sense that
supθ∈Θ |D(qj , θ)− D(q, θ)| → 0.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 17 / 29



Bayesian robustness

Relationship EDAP and MDAP functions with their frequentist
counterpart

The minimum disparity estimator (MDE) of θ0 based on p̂n, which is defined as:

θ̂Dn = arg min
θ∈Θ

D(p̂n, θ),

and the associated disparity function defined as:

T : Γ → Θ

q 7→ T (q) = arg min
θ∈Θ

D(q, θ),

Under certain conditions, it can be proved, on {Zn →∞}:

T n(q)− T (q) = o
(

∆
−1/2
n−1

)
a.s.

T̃n(q)− T (q) = o
(

∆
−1/2
n−1

)
a.s.
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Bayesian robustness estimators: asymptotic properties

Some notation

ID(θ) = D̈(p, θ), and IDn (θ) = D̈(p̂n, θ), where recall that p is the posited
offspring distribution and p̂n is the MLE

Thus, p = pθ0
, one has that ID(θ0) reduces to the Fisher information at θ0

denoted by I (θ0)

ϕ(t; θ) denotes the density function of a normal distribution with mean 0 and
variance ID(θ)−1

ϕn(t) denotes the density function of a normal distribution with mean 0 and
variance IDn (θ̂Dn )−1.
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Bayesian robustness estimators: asymptotic properties

Let πn
D(·|p̂n) denote the D-posterior density function of t = ∆

1/2
n−1(θ − θ̂Dn ). Under

some regularity conditions, on {Zn →∞}, then:

1
∫
|πn

D(t|p̂n)− ϕ(t; θp)|dt → 0 a.s.

2
∫
|t||πn

D(t|p̂n)− ϕ(t; θp)|dt → 0 a.s.

3
∫
|πn

D(t|p̂n)− ϕn(t)|dt → 0 a.s.

4 limn→∞ supt∈R |πn
D(t|p̂n)− ϕ(t; θp)| = 0 a.s.
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Bayesian robustness estimators: asymptotic properties

Strong consistency of EDAP:

θD∗n
a.s.−−−→

n→∞
θ0, on {Zn →∞}.

Asymptotic normality of EDAP:

∆
1/2
n−1(θD∗n − θ0)

d−−−→
n→∞

N(0, I (θ0)−1), on {Zn →∞}.

Strong consistency of MDAP:

θD+
n

a.s.−−−→
n→∞

θ0, on {Zn →∞}.

Asymptotic normality of MDAP:

∆
1/2
n−1(θD+

n − θ0)
d−−−→

n→∞
N(0, I (θ0)−1), on {Zn →∞}.
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Simulated example (Continuation)
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Fig: EDAP estimates (black lines) for the HD (left) and NED (right), with the 95% HPD intervals (green
lines) and true value of θ (red lines).
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Simulated example (Continuation)
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Fig: MDAP estimates (black lines) for the HD (left) and NED (right), with the 95% HPD intervals (green
lines) and true value of θ (red lines).
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Robust properties

X We focus on the gross error contamination model given by

p(θ, α, L) = (1− α)pθ + αηL, (1)

where θ ∈ Θ, α ∈ (0, 1), L ∈ N0, and ηL is a point mass distribution at L.

X We define α-influence function of a random variable T : Γ× Ω→ Θ. For
α ∈ (0, 1), set

IFα(·,T , p) : N0 × Ω → R

(L, ω) 7→ IFα(L,T , p)(ω) =
T (p(θ0, α, L))(ω)− T (pθ0

)(ω)

α
.

X The influence function for EDAP estimators at p is given by

IF (·,T n, p) : N0 → R
L 7→ IF (L,T n, p) = lim

α→0
IFα(L,T n, p).

Under some conditions |IF (L,T n, p)| <∞, for each L ∈ N0 and n ∈ N.
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Robust properties

Study of breakdown point
X Classically, the breakdown point of a general function T at q ∈ Γ is defined as:

B(T , q) = sup{α ∈ (0, 1) : b(α,T , q) <∞},

where b(α,T , q) = sup {|T ((1− α)q + αq)− T (q)| : q ∈ Γ}.

X Under some regularity conditions, the breakdown points of the EDAP and
MDAP functions at p are 1, respectively.
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Concluding remarks

The motivation for the study of robust procedures in the context of CBPs is
the need of estimating the offspring distribution when the reproductive
capacity of the individuals is influenced by temporary events.

For a CBP with offspring distribution belonging to a parametric family Fθ,
we have deduced the D-posterior density of θ0 given the whole family tree
and we studied the consistency and asymptotic normality of EDAP and
MDAP estimators.

We have shown robustness properties against model perturbations and
resistance to outliers of the EDAP and MDAP for a certain family of
disparities. These properties show that the related D-posterior densities are
better choices than posterior one.

We have implemented this methodology using statistical software and
programming environment R.
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González, M., M.C., del Puerto, I., Vidyashankar, A.N. (2017). Robust
estimation in controlled branching processes: Bayesian estimators via
disparities. arXiv:1802.05917.

Ghosh, A. and Basu, A. (2016). Robust Bayes estimation using the density
power diver- gence. Annals of the Institute of Statistical Mathematics 68,
413–437.

Ghosh, A. and Basu, A. (2017). General Robust Bayes Pseudo-Posterior:
Exponential Convergence results with Applications. arXiv:1708.09692.

I. del Puerto (University of Extremadura) Inference in CBP via disparity measures WBPA18, Badajoz 2018 27 / 29



References

Sriram, T. N. and Vidyashankar, A. N. (2000) Minimum Hellinger distance
estimation for supercritical Galton–Watson processes. Statistics and
Probability Letters, 50, 331–342.

Stoimenova, V., Atanasov, D. and Yanev, N. (2004) Robust estimation and
simulation of branching processes. Comptes rendus de l’Acadèmie bulgare des
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Thank you very much!
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