

Robust estimation in controlled branching processes: Bayesian estimators via disparities

Inés M. del Puerto

Joint work with M. González, C. Minuesa and A.N. Vidyashankar

Department of Mathematics Faculty of Sciences University of Extremadura Spain

Contents

Probability model

- 2 Setting out the problem
- Bayesian robustness via disparities
 - The disparity approach
 - Asymptotic properties
 - Robust properties
- 4 Concluding remarks and references
 - Concluding remarks
 - References

Controlled Branching Processes

A Controlled Branching Process is a discrete-time stochastic growth population model in which the individuals with reproductive capacity in each generation are controlled. This branching model is well-suited for describing the probabilistic evolution of populations in which, for various reasons of an environmental, social or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation.

Image: A mathematical states and a mathem

Controlled Branching Processes

A Controlled Branching Process is a discrete-time stochastic growth population model in which the individuals with reproductive capacity in each generation are controlled. This branching model is well-suited for describing the probabilistic evolution of populations in which, for various reasons of an environmental, social or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation.

Controlled Branching Processes

A Controlled Branching Process is a discrete-time stochastic growth population model in which the individuals with reproductive capacity in each generation are controlled. This branching model is well-suited for describing the probabilistic evolution of populations in which, for various reasons of an environmental, social or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation.

3 / 29

I. del Puerto (University of Extremadura)

Definition (Yanev (1975))

Let $\{X_{ni} : n = 0, 1, ...; i = 1, 2, ...\}$ and $\{\phi_n(k) : n, k = 0, 1, ...\}$ be two independent families of non negative integer valued random variables which are defined on the same probability space, (Ω, \mathcal{A}, P) .

- (i) $\{X_{ni} : n = 0, 1, \dots; i = 1, 2, \dots\}$ are i.i.d. random variables whose distribution is denoted by $p = \{p_k\}_{k \ge 0}$, $p_k = P[X_{01} = k]$, $k \ge 0$.
- (ii) For n = 0, 1, ..., {φ_n(k) : k = 0, 1, ...} are independent stochastic processes with equal one-dimensional probability distributions, i.e., for each n, p_j(k) = P[φ_n(k) = j], j, k ≥ 0.

The stochastic process $\{Z_n\}_{n\geq 0}$ defined as:

$$Z_0 = N \ge 0, \quad Z_{n+1} = \sum_{i=1}^{\phi_n(Z_n)} X_{ni}, \quad n = 0, 1, \quad \left(\sum_{i=1}^0 0\right),$$

is known as **Controlled Branching Process (CBP) with random control function**.

イロト 不得下 イヨト イヨト

Main parameters of the model

- $p = \{p_k\}_{k \ge 0}$: offspring distribution or reproduction law.
- $m = E[X_{01}]$: offspring mean.
- $\sigma^2 = Var[X_{01}]$: offspring variance.

・ロト ・回ト ・ ヨト

Main parameters of the model

- $p = \{p_k\}_{k \ge 0}$: offspring distribution or reproduction law.
- $m = E[X_{01}]$: offspring mean.
- $\sigma^2 = Var[X_{01}]$: offspring variance.

Aim of the communication

To provide robust estimators for the offspring distribution

・ロト ・回ト ・ ヨト

Motivation

• The reproductive capacity of a small proportion of individuals can be influenced by temporary events (presence of a disease with a low prevalence, punctual changes on the environmental conditions, etc.).

Example: during the process of mammalian cell division, or mitosis, a mother cell divides equally into two daughter cells, but it comes to cancer, mother cells may be far more prolific.

Fig: Cell division into five daughter cells. Image credit: UCLA Engineering.

In the frame of the branching processes, robust estimation:

- By using weighted least trimmed estimation for BGWP
 - STOIMENOVA, V., ATANASOV, D. AND YANEV, N. (2004) Robust estimation and simulation of branching processes. *Comptes rendus de l'Acadèmie bulgare des sciences*, **57(5)**, 19–22.

Image: A mathematical states and a mathem

In the frame of the branching processes, robust estimation:

- By using weighted least trimmed estimation for BGWP
 - STOIMENOVA, V., ATANASOV, D. AND YANEV, N. (2004) Robust estimation and simulation of branching processes. *Comptes rendus de l'Acadèmie bulgare des sciences*, **57(5)**, 19–22.
- By considering minimum Hellinger distance estimation in a frecuentist context for BGWP
 - SRIRAM, T. N. AND VIDYASHANKAR, A. N. (2000) Minimum Hellinger distance estimation for supercritical Galton–Watson processes. *Statistics and Probability Letters*, **50**, 331–342.

In the frame of the branching processes, robust estimation:

- By using weighted least trimmed estimation for BGWP
 - STOIMENOVA, V., ATANASOV, D. AND YANEV, N. (2004) Robust estimation and simulation of branching processes. *Comptes rendus de l'Acadèmie bulgare des sciences*, **57(5)**, 19–22.
- By considering minimum Hellinger distance estimation in a frecuentist context for BGWP
 - SRIRAM, T. N. AND VIDYASHANKAR, A. N. (2000) Minimum Hellinger distance estimation for supercritical Galton–Watson processes. *Statistics and Probability Letters*, **50**, 331–342.
- By considering disparity measures distance estimation in a frecuentist context for CBP
 - GONZÁLEZ, M, MINUESA, C. AND IP (2017) Minimum disparity estimation controlled branching process. *Electronic Journal of Statistics*, 11(1),295–325.

Assumption

The offspring distribution belongs to a parametric family

$$\mathcal{F}_{\theta} = \{ \boldsymbol{p}_{\theta} : \theta \in \Theta \}, \qquad \Theta \subseteq \mathbb{R},$$

that is, $\boldsymbol{p} = \boldsymbol{p}_{\theta_0}$, with $\theta_0 \in \Theta$. Moreover

$$p_k(\theta_1) = p_k(\theta_2), \quad \forall k \in \mathbb{N}_0 \qquad \Rightarrow \qquad \theta_1 = \theta_2,$$

identifiability condition.

Aim

In a Bayesian framework, to obtain robust estimators of θ_0 given the entire family tree.

• Sample:
$$\mathcal{Z}_n^* = \Big\{ Z_l(k) = \sum_{i=1}^{\phi_l(Z_l)} I_{\{X_{li}=k\}} : k \ge 0; l = 0, \dots, n-1 \Big\}.$$

• Likelihood function of θ based on \mathcal{Z}_n^* :

$$f(\mathcal{Z}_{n}^{*}|\theta) = \prod_{l=0}^{n-1} \frac{\phi_{l}^{*}!}{\prod_{k=0}^{\infty} Z_{l}(k)} \prod_{k=0}^{\infty} p_{k}(\theta)^{Z_{l}(k)} P[\phi_{l}(z_{l}) = \phi_{l}^{*}].$$

• Posterior density:

$$\pi(\theta|\mathcal{Z}_n^*) \propto f(\mathcal{Z}_n^*| heta)\pi(heta) \propto \pi(heta) \prod_{l=0}^{n-1} \prod_{k=0}^{\infty} p_k(heta)^{Z_l(k)}.$$

- Bayesian point estimators
 - Expectation a posteriori (EAP):

$$heta_n^* = \int_{\Theta} heta \pi(heta | \mathcal{Z}_n^*) d heta.$$

• Maximum a posteriori (MAP):

・ロト ・回ト ・ヨト

$$\theta_n^+ = \arg \max_{\theta \in \Theta} \pi(\theta | \mathcal{Z}_n^*).$$

Simulated example

• Parametric family:

 $\mathcal{F}_{\theta} = \{ G(\theta) : \theta \in (0,1) \}, \quad G(\theta) \equiv \text{geometric distribution with parameter } \theta.$

• Mixture model for gross errors:

$$p(\theta_0, \alpha, L) = (1 - \alpha)G(\theta_0) + \alpha \delta_L, \qquad \theta_0 = 0.3, \quad \alpha = 0.05, \quad L = 11.$$

We have simulated 45 generations of a CBP:

•
$$Z_0 = 1$$
 individual.

• $X_{ij} \sim p(\theta, \alpha, L)$, for i = 0, 1, ..., j = 1, ...

•
$$\phi_n(k) \sim \mathcal{P}(k\lambda)$$
, with $\lambda = 0.6$, $k \ge 0$.

•
$$m = 2.333$$
 and $\sigma^2 = 7.778$.

Simulated example

• Posterior density:

 $\pi(\theta|\mathcal{Z}_n^*)\propto \pi(\theta)\prod_{k=0}^{\infty}\prod_{l=0}^{n-1}p_k(\theta)^{Z_l(k)}.$

Fig: Posterior density of θ at the generation 45 (left). Temporal evolution of the EAP and MAP estimates for θ_0 (right). Red lines represent the true value of the parameters and dashed lines represent the 95% HPD or interval.

・ロト ・回ト ・ ヨト

Estimation via disparities

- Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods. *The Annals of Statistics*, **22**, 1081-1114.
- González, M., Minuesa, C., I.P. (2017). Minimum disparity estimation in controlled branching process, *Electronic Journal of Statistics, Electronic Journal of Statistics*, 11(1), 295-325.
- Hooker, G., Vidyashankar, A.N. (2014). Bayesian model robustness via disparities. *Test*, **23(3)**, 556-584.
- Ghosh, A. and Basu, A. (2016). Robust Bayes estimation using the density power diver- gence. *Annals of the Institute of Statistical Mathematics* 68, 413–437.
- Ghosh, A. and Basu, A. (2017). General Robust Bayes Pseudo-Posterior: Exponential Convergence results with Applications. arXiv:1708.09692.
- González, M., Minuesa, C., I.P., Vidyashankar, A.N. (2017). Robust estimation in controlled branching processes: Bayesian estimators via disparities. arXiv:1802.05917.

A D > A B > A B >

It is easy to prove that

$$f(\mathcal{Z}_n^*|\theta) \propto \exp\left(\Delta_{n-1}\sum_{k=0}^{\infty} \hat{p}_{n,k} \log(p_k(\theta))\right) = \exp\left(-\Delta_{n-1} \mathcal{KL}(\hat{p}_n,\theta)\right),$$

where

$$\begin{split} \Delta_{n-1} &= \sum_{l=0}^{n-1} \phi_l(Z_l) \\ \hat{p}_{n,k} &= \frac{\sum_{l=0}^{n-1} Z_l(k)}{\Delta_{n-1}}, \quad k \ge 0, \quad (\text{MLE of } p \text{ based on } \mathcal{Z}_n^*). \\ \mathcal{K}L(q,\theta) &= \sum_{k=0}^{\infty} \log\left(\frac{q_k}{p_k(\theta)}\right) q_k, \end{split}$$

æ

< □ > < □ > < 三

Disparity measure

A disparity measure between $q \in \Gamma$ and $p(\theta) \in \mathcal{F}_{\theta}$ is defined by:

$$D(q, \theta) = \sum_{k=0}^{\infty} G(\delta(q, \theta, k)) p_k(\theta),$$

with $G(\cdot)$ a three times differentiable and strictly convex function on $[-1,\infty)$ with G(0)=0 and

$$\delta(q, \theta, k) = rac{q_k}{p_k(\theta)} - 1$$
 (Pearson residual).

Examples of disparity measures

Disparity measure	Notation	$G(\delta)$
Kullback-Leibler divergence	$KL(q, \theta)$	$(\delta+1)\log(\delta+1)-\delta$
Squared Hellinger distance	$HD(q, \theta)$	$2[(\delta+1)^{1/2}-1]^2$
Negative exponential disparity	$NED(q, \theta)$	$\exp(-\delta) - 1 + \delta$

・ロト ・日子・ ・ 田子・

 $\pi(\theta|\mathcal{Z}_n^*) \propto \exp\left(-\Delta_{n-1}\mathsf{KL}(\hat{\mathbf{p}}_n, \theta)\right) \pi(\theta).$

 $\pi(\theta|\mathcal{Z}_n^*) \propto \exp\left(-\Delta_{n-1}\mathsf{KL}(\hat{\mathbf{p}}_n, \theta)\right) \pi(\theta).$

• D-Posterior density:

 $\pi_D^n(\theta|\hat{p}_n) \propto \exp\left(-\Delta_{n-1}\mathbf{D}(\hat{\mathbf{p}}_n,\theta)\right)\pi(\theta).$

< □ > < 🗗 > < 🖹

 $\pi(\theta|\mathcal{Z}_n^*) \propto \exp\left(-\Delta_{n-1}\mathsf{KL}(\hat{\mathbf{p}}_n, \theta)\right) \pi(\theta).$

• Expectation a posteriori (EAP):

$$\theta_n^* = \int_{\Theta} \theta \pi(\theta | \mathcal{Z}_n^*) d\theta.$$

• Maximum a posteriori (MAP):

 $\theta_n^+ = \arg \max_{\theta \in \Theta} \pi(\theta | \mathcal{Z}_n^*).$

• D-Posterior density:

 $\pi_D^n(heta|\hat{p}_n)\propto\exp\left(-\Delta_{n-1}\mathsf{D}(\hat{\mathbf{p}}_n, heta)
ight)\pi(heta).$

Image: A mathematical states and a mathem

 $\pi(\theta|\mathcal{Z}_n^*) \propto \exp\left(-\Delta_{n-1}\mathsf{KL}(\hat{\mathbf{p}}_n, \theta)\right) \pi(\theta).$

• Expectation a posteriori (EAP):

$$\theta_n^* = \int_{\Theta} \theta \pi(\theta | \mathcal{Z}_n^*) d\theta.$$

• Maximum a posteriori (MAP):

 $\theta_n^+ = \arg \max_{\theta \in \Theta} \pi(\theta | \mathcal{Z}_n^*).$

• D-Posterior density:

$$\pi_D^n(\theta|\hat{p}_n) \propto \exp\left(-\Delta_{n-1} \mathbf{D}(\hat{\mathbf{p}}_n, \theta)\right) \pi(\theta).$$

• Expectation D-a posteriori (EDAP):

$$\theta_n^{D*} = \int_{\Theta} \theta \pi_{\mathsf{D}}^{\mathsf{n}}(\theta | \hat{\mathbf{p}}_{\mathsf{n}}) d\theta.$$

• Maximum D-a posteriori (MDAP):

$$heta_n^{D+} = \arg \max_{ heta \in \Theta} \pi_{\mathsf{D}}^{\mathsf{n}}(heta | \hat{\mathsf{p}}_{\mathsf{n}}).$$

Simulated example (Continuation)

• **HD-Posterior density**: $\pi_{HD}(\theta|\hat{p}_n) \propto \pi(\theta) e^{2\Delta_{n-1}\sum_{k=0}^{\infty} (\hat{p}_{n,k}p_k(\theta))^{1/2}}$.

• **NED-Posterior density**: $\pi_{NED}(\theta|\hat{p}_n) \propto \pi(\theta)e^{-\Delta_{n-1}\sum_{k=0}^{\infty} \left(\exp\left\{-\left(\frac{\hat{p}_{n,k}}{p_k(\theta)}-1\right)\right\}-1\right)p_k(\theta)}$.

Fig: HD-Posterior density (left) and NED-Posterior density (right) of θ at the generation 45 (left). Red lines represent the true value of the parameters and dashed lines represent the 95% HPD interval.

EDAP and MDAP functions, \overline{T}_n and \overline{T}_n

For $(q, \omega) \in \Gamma \times \Omega$

$$\overline{T}_{n}(q)(\omega) = \frac{\int_{\Theta} \theta e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}{\int_{\Theta} e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}$$
$$\widetilde{T}_{n}(q)(\omega) = \arg\min_{\theta \in \Theta} \left(\Delta_{n-1}(\omega)D(q,\theta) - \log(\pi(\theta))\right)$$

・ロト ・回ト ・ ヨト

EDAP and MDAP functions, \overline{T}_n and T_n

For $(q, \omega) \in \Gamma \times \Omega$

$$\overline{T}_{n}(q)(\omega) = \frac{\int_{\Theta} \theta e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}{\int_{\Theta} e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}$$
$$\widetilde{T}_{n}(q)(\omega) = \arg\min_{\theta\in\Theta} (\Delta_{n-1}(\omega)D(q,\theta) - \log(\pi(\theta)))$$

Notice that $\theta_n^{*D}(\omega) = \overline{T}_n(\hat{p}_n)(\omega)$, and $\theta_n^{+D}(\omega) = \widetilde{T}_n(\hat{p}_n)(\omega)$

<ロ> (日) (日) (日) (日)

EDAP and MDAP functions, \overline{T}_n and T_n

For $(q, \omega) \in \Gamma \times \Omega$

$$\overline{T}_{n}(q)(\omega) = \frac{\int_{\Theta} \theta e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}{\int_{\Theta} e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}$$
$$\widetilde{T}_{n}(q)(\omega) = \arg\min_{\theta\in\Theta} (\Delta_{n-1}(\omega)D(q,\theta) - \log(\pi(\theta)))$$

Notice that $\theta_n^{*D}(\omega) = \overline{T}_n(\hat{\rho}_n)(\omega)$, and $\theta_n^{+D}(\omega) = \widetilde{T}_n(\hat{\rho}_n)(\omega)$

Under certain conditions it is proved that \overline{T}_n and \widetilde{T}_n random variables and • $\overline{T}_n(\cdot)$ is almost surely continuous on $\widetilde{\Gamma}$ with respect to the l_1 -metric; that is, $q_j \to q$ in l_1 , then $\overline{T}_n(q_j) \to \overline{T}_n(q)$, as $j \to \infty$, with probability one.

EDAP and MDAP functions, \overline{T}_n and \overline{T}_n

For $(q, \omega) \in \Gamma \times \Omega$

$$\overline{T}_{n}(q)(\omega) = \frac{\int_{\Theta} \theta e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}{\int_{\Theta} e^{-\Delta_{n-1}(\omega)D(q,\theta)}\pi(\theta)d\theta}$$
$$\widetilde{T}_{n}(q)(\omega) = \arg\min_{\theta\in\Theta} (\Delta_{n-1}(\omega)D(q,\theta) - \log(\pi(\theta)))$$

Notice that $\theta_n^{*D}(\omega) = \overline{T}_n(\hat{p}_n)(\omega)$, and $\theta_n^{+D}(\omega) = \widetilde{T}_n(\hat{p}_n)(\omega)$

Under certain conditions it is proved that T
n and T
n random variables and
T
n(·) is almost surely continuous on Γ with respect to the l₁-metric; that is, qj → q in l₁, then T
n(qj) → T
n(q), as j → ∞, with probability one.
The function T
n(·) is continuous in q; that is, T
n(qj) → T
n(q) with probability one as j → ∞, as qj → q in the sense that sup_{θ∈Θ} |D(qj, θ) - D(q, θ)| → 0.

I. del Puerto (University of Extremadura)

Relationship EDAP and MDAP functions with their frequentist counterpart

The minimum disparity estimator (MDE) of θ_0 based on \hat{p}_n , which is defined as:

$$\hat{\theta}_n^D = \arg\min_{\theta\in\Theta} D(\hat{p}_n, \theta),$$

and the associated disparity function defined as:

Image: A mathematical states and a mathem

Relationship EDAP and MDAP functions with their frequentist counterpart

The minimum disparity estimator (MDE) of θ_0 based on \hat{p}_n , which is defined as:

$$\hat{\theta}_n^D = \arg\min_{\theta\in\Theta} D(\hat{p}_n, \theta),$$

and the associated disparity function defined as:

Under certain conditions, it can be proved, on $\{Z_n \to \infty\}$:

•
$$\overline{T}_n(q) - T(q) = o\left(\Delta_{n-1}^{-1/2}\right)$$
 a.s.

•
$$\widetilde{T}_n(q) - T(q) = o\left(\Delta_{n-1}^{-1/2}\right)$$
 a.s.

Some notation

- $I^{D}(\theta) = \ddot{D}(p, \theta)$, and $I^{D}_{n}(\theta) = \ddot{D}(\hat{p}_{n}, \theta)$, where recall that p is the posited offspring distribution and \hat{p}_{n} is the MLE
- Thus, p = p_{θ0}, one has that I^D(θ0) reduces to the Fisher information at θ0 denoted by I(θ0)
- $\varphi(t;\theta)$ denotes the density function of a normal distribution with mean 0 and variance $I^{D}(\theta)^{-1}$
- $\varphi_n(t)$ denotes the density function of a normal distribution with mean 0 and variance $I_n^D(\hat{\theta}_n^D)^{-1}$.

Let $\overline{\pi}_D^n(\cdot|\hat{p}_n)$ denote the *D*-posterior density function of $t = \Delta_{n-1}^{1/2} (\theta - \hat{\theta}_n^D)$. Under some regularity conditions, on $\{Z_n \to \infty\}$, then:

• Strong consistency of EDAP:

$$\theta_n^{D*} \xrightarrow[n \to \infty]{a.s.} \theta_0, \quad \text{ on } \{Z_n \to \infty\}.$$

• Asymptotic normality of EDAP:

$$\Delta_{n-1}^{1/2}(\theta_n^{D*}-\theta_0)\xrightarrow[n\to\infty]{d} \mathcal{N}(0,I(\theta_0)^{-1}), \quad \text{on } \{Z_n\to\infty\}.$$

• Strong consistency of MDAP:

$$\theta_n^{D+} \xrightarrow[n \to \infty]{a.s.} \theta_0, \quad \text{ on } \{Z_n \to \infty\}.$$

• Asymptotic normality of MDAP:

$$\Delta_{n-1}^{1/2}(\theta_n^{D+}-\theta_0)\xrightarrow[n\to\infty]{d} N(0,I(\theta_0)^{-1}), \quad \text{ on } \{Z_n\to\infty\}.$$

I. del Puerto (University of Extremadura)

Simulated example (Continuation)

Fig: EDAP estimates (black lines) for the HD (left) and NED (right), with the 95% HPD intervals (green lines) and true value of θ (red lines).

Simulated example (Continuation)

Fig: MDAP estimates (black lines) for the HD (left) and NED (right), with the 95% HPD intervals (green lines) and true value of θ (red lines).

Robust properties

 \checkmark We focus on the gross error contamination model given by

$$\boldsymbol{p}(\boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{L}) = (1 - \alpha)\boldsymbol{p}_{\boldsymbol{\theta}} + \alpha \eta_{\boldsymbol{L}}, \qquad (1)$$

where $\theta \in \Theta$, $\alpha \in (0, 1)$, $L \in \mathbb{N}_0$, and η_L is a point mass distribution at L.

Image: A mathematical states and a mathem

Robust properties

 \checkmark We focus on the gross error contamination model given by

$$p(\theta, \alpha, L) = (1 - \alpha)\boldsymbol{p}_{\theta} + \alpha \eta_L, \qquad (1)$$

WBPA18, Badaioz 2018

where $\theta \in \Theta$, $\alpha \in (0, 1)$, $L \in \mathbb{N}_0$, and η_L is a point mass distribution at L. \checkmark We define α -influence function of a random variable $\overline{T} : \Gamma \times \Omega \to \Theta$. For $\alpha \in (0, 1)$, set

$$\begin{aligned} \mathsf{IF}_{\alpha}(\cdot,\overline{T},p):\mathbb{N}_{0}\times\Omega &\to \mathbb{R} \\ (L,\omega) &\mapsto \mathsf{IF}_{\alpha}(L,\overline{T},p)(\omega) = \frac{\overline{T}(p(\theta_{0},\alpha,L))(\omega) - \overline{T}(p_{\theta_{0}})(\omega)}{\alpha} \end{aligned}$$

Robust properties

 \checkmark We focus on the gross error contamination model given by

$$p(\theta, \alpha, L) = (1 - \alpha)\boldsymbol{p}_{\theta} + \alpha \eta_L, \qquad (1)$$

where $\theta \in \Theta$, $\alpha \in (0, 1)$, $L \in \mathbb{N}_0$, and η_L is a point mass distribution at L. \checkmark We define α -influence function of a random variable $\overline{T} : \Gamma \times \Omega \to \Theta$. For $\alpha \in (0, 1)$, set

$$\begin{aligned} IF_{\alpha}(\cdot,\overline{T},p):\mathbb{N}_{0}\times\Omega &\to \mathbb{R} \\ (L,\omega) &\mapsto IF_{\alpha}(L,\overline{T},p)(\omega) = \frac{\overline{T}(p(\theta_{0},\alpha,L))(\omega) - \overline{T}(p_{\theta_{0}})(\omega)}{\alpha} \end{aligned}$$

 \checkmark The influence function for EDAP estimators at p is given by

$$\begin{split} IF(\cdot,\overline{T}_n,p):\mathbb{N}_0 &\to & \mathbb{R} \\ L &\mapsto & IF(L,\overline{T}_n,p) = \lim_{\alpha \to 0} IF_\alpha(L,\overline{T}_n,p). \end{split}$$

Under some conditions $|IF(L, \overline{T}_n, p)| < \infty$, for each $L \in \mathbb{N}_0$ and $n \in \mathbb{N}_{+}$

24 / 29

Study of breakdown point

✓ Classically, the breakdown point of a general function \overline{T} at $q \in \Gamma$ is defined as:

$$B(\overline{T},q) = \sup\{\alpha \in (0,1) : b(\alpha,\overline{T},q) < \infty\},\$$

where $b(\alpha, \overline{T}, q) = \sup \{ |\overline{T}((1 - \alpha)q + \alpha \overline{q}) - \overline{T}(q)| : \overline{q} \in \Gamma \}.$

Image: A mathematic state of the state of

Study of breakdown point

✓ Classically, the breakdown point of a general function \overline{T} at $q \in \Gamma$ is defined as:

$$B(\overline{T},q) = \sup\{\alpha \in (0,1) : b(\alpha,\overline{T},q) < \infty\},\$$

where
$$b(\alpha, \overline{T}, q) = \sup \{ |\overline{T}((1 - \alpha)q + \alpha \overline{q}) - \overline{T}(q)| : \overline{q} \in \Gamma \}.$$

 \checkmark Under some regularity conditions, the breakdown points of the EDAP and MDAP functions at p are 1, respectively.

• The motivation for the study of **robust procedures** in the context of CBPs is the need of estimating the offspring distribution when the **reproductive capacity** of the individuals is influenced by **temporary events**.

- The motivation for the study of **robust procedures** in the context of CBPs is the need of estimating the offspring distribution when the **reproductive capacity** of the individuals is influenced by **temporary events**.
- For a CBP with offspring distribution belonging to a parametric family \mathcal{F}_{θ} , we have deduced the **D**-posterior density of θ_0 given the whole family tree and we studied the consistency and asymptotic normality of EDAP and MDAP estimators.

- The motivation for the study of **robust procedures** in the context of CBPs is the need of estimating the offspring distribution when the **reproductive capacity** of the individuals is influenced by **temporary events**.
- For a CBP with offspring distribution belonging to a parametric family \mathcal{F}_{θ} , we have deduced the **D**-posterior density of θ_0 given the whole family tree and we studied the consistency and asymptotic normality of EDAP and MDAP estimators.
- We have shown robustness properties against model perturbations and resistance to outliers of the EDAP and MDAP for a certain family of disparities. These properties show that the related *D*-posterior densities are better choices than posterior one.

- The motivation for the study of **robust procedures** in the context of CBPs is the need of estimating the offspring distribution when the **reproductive capacity** of the individuals is influenced by **temporary events**.
- For a CBP with offspring distribution belonging to a parametric family \mathcal{F}_{θ} , we have deduced the **D**-posterior density of θ_0 given the whole family tree and we studied the consistency and asymptotic normality of EDAP and MDAP estimators.
- We have shown robustness properties against model perturbations and resistance to outliers of the EDAP and MDAP for a certain family of disparities. These properties show that the related *D*-posterior densities are better choices than posterior one.
- We have **implemented** this methodology using statistical software and programming environment **R**.

Image: A mathematical states and a mathem

References

- Hooker, G., Vidyashankar, A.N. (2014). Bayesian model robustness via disparities. *Test*, 23(3), 556-584.
- Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods. *The Annals of Statistics*, **22**, 1081-1114.
- González, M., Minuesa, C., P.I. (2017). Minimum disparity estimation controlled branching process. *Electronic Journal of Statistics*, **11(1)**, 295-325.
- González, M., M.C., del Puerto, I., Vidyashankar, A.N. (2017). Robust estimation in controlled branching processes: Bayesian estimators via disparities. arXiv:1802.05917.
 - Ghosh, A. and Basu, A. (2016). Robust Bayes estimation using the density power diver- gence. *Annals of the Institute of Statistical Mathematics* 68, 413–437.
 - Ghosh, A. and Basu, A. (2017). General Robust Bayes Pseudo-Posterior: Exponential Convergence results with Applications. arXiv:1708.09692.

• • • • • • • • • • • •

- Sriram, T. N. and Vidyashankar, A. N. (2000) Minimum Hellinger distance estimation for supercritical Galton–Watson processes. *Statistics and Probability Letters*, **50**, 331–342.
- Stoimenova, V., Atanasov, D. and Yanev, N. (2004) Robust estimation and simulation of branching processes. *Comptes rendus de l'Acadèmie bulgare des sciences*, 57(5), 19–22.
- Yanev, N.M. (1975). Conditions for degeneracy of φ -branching processes with random φ . Theory of Probability and its Applications, **20**, 421-428.

Thank you very much!

Acknowledgements: This research has been supported by the Ministerio de Economía y Competividad (grant MTM2015-70522-P), the Junta de Extremadura (IB16099) and the Fondo Europeo de Desarrollo Regional.

Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

Consejería de Economía e Infraestructuras

・ロト ・日ト ・ヨト ・ヨト