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Asymptotic properties of expansive Galton-Watson trees
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In collaboration with R. Abraham (ArXiv 2017) and with R. Abraham and

A. Bouaziz (ArXiv 2017).

We shall forget about any peridioc condition in this presentation.
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Asymptotic properties of expansive Galton-Watson trees

Definition of local limit of random (GW) trees

Local limit

T set of rooted ordered trees.

For t ∈ T, set |t| its cardinal, H(t) its height.

For v ∈ t, set kv(t) ∈ N
⋃

{∞} its out-degree and H(v) its height.

Subset of trees with finite out-degrees and finite height h ∈ N:

Tf = {t ∈ T, kv(t) < ∞ for all v ∈ t} and T
(h)
f = {t ∈ Tf, H(t) = h}.

Truncation at level h ∈ N
∗: rh(t) = {v ∈ t, H(v) ≤ h}.

A sequence (Tn, n ∈ N) of random trees converges locally in law

towards a random tree T ∈ Tf (write Tn
(d)

−−−→
n→∞

T) iff:

lim
n→∞

P(rh(Tn) = t) = P(rh(T) = t) for all h ∈ N
∗, t ∈ T

(h)
f .

Convergence in the condensation case (that is T 6∈ Tf) is more technical.
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Asymptotic properties of expansive Galton-Watson trees

Definition of local limit of random (GW) trees

GW trees

Offspring distribution: p = (p(k), k ∈ N).

Assume p is non degenerate: #{k ∈ N, p(k) > 0} ≥ 2.

Assume finite mean: µ =
∑

k∈N
kp(k) ∈ (0,+∞).

GW tree τ is a random tree with distribution defined by:

P(rh(τ) = t) =
∏

v∈t, H(v)<h

p(kv(t)) for all h ∈ N
∗, t ∈ T

(h)
f .
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Asymptotic properties of expansive Galton-Watson trees

Definition of local limit of random (GW) trees

GW process

Size of the population at height h: zh(t) = #{v ∈ t, H(v) = h}.

Process z(t) = (zh(t), h ∈ N).

z(τ) is the GW process associated to the GW tree τ .

Let τn
(d)
= τ cond. on some event En s.t. P(En) > 0, for n ∈ N

∗.

Well known example: En = {zn(τ) > 0}.

Aim: existence and representation of the local limit of (τn, n ∈ N
∗).

Why consider GW trees τn instead of GW processes z(τn)?
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Asymptotic properties of expansive Galton-Watson trees

Definition of local limit of random (GW) trees

Extinction probability c and representation of super-critical

GW tree

Set c the extinction probability: c = P(H(τ) < ∞).

If c > 0, set p′ = (p′(k) = c
k−1p(k), k ∈ N).

If µ ≤ 1 and c > 0, then c = 1 and p′ = p!

If µ > 1 and c > 0, then c ∈ (0, 1) and τ has a two-type representation:

The vertices are either of type s (for survivor) or of type e (for extinction).

Root is of type s with probability 1 − c.

Branching property holds for type e and s.

A vertex of type e produces vertices of type e with offspring distrib. p′.

A vertex of type s produces vertices of type s (at least one) and of type e.
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Asymptotic properties of expansive Galton-Watson trees

Kesten tree as local limit of critical GW tree

Kesten tree τ
0

If c > 0: Kesten tree τ 0 seen as a two-type GW tree:

The vertices are either of type s (for survivor) or of type e (for extinction).

Root is of type s.

Branching property holds for type e and s.

A vertex of type e produces vertices of type e with offspring distrib. p′.

A vertex of type s produces one vertex of type s and vertices of type e.

If c = 0, the (degenerate) Kesten tree τ 0 is the regular a-ary tree, with:

a = inf{k, p(k) > 0} ≥ 1.
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Kesten tree as local limit of critical GW tree

Local convergence to Kesten tree for (sub-)critical GW trees

Recall: τn
(d)
= τ conditionally on some event En, s.t. P(En) > 0.

Case µ = 1. Taking En equal to:

{H(τ ) = n};

{|τ | = n} or more generally {#{v ∈ τ, kv(τ ) ∈ A} = n} with A ⊂ N;

we get:

τn
(d)

−−−→
n→∞

τ 0. (1)

Case µ < 1. For En = {H(τ) = n}, we get also (1).

Case µ < 1. For En = {|τ | = n}, the limit is:

either a Kesten tree (but associated to an offspring distribution 6= p)

or a random tree with one vertex with infinite out-degree (condensation).

Can we get other limits (such as infinite backbone?)
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Asymptotic properties of expansive Galton-Watson trees

Local limits for general super-critical GW trees

The geometric case (Abraham-Bouaziz-D. (2017))

Consider:

En = {zn(τ) = an} with an ≥ 1.

Geometric case: p(0) = 1 − η and p(k) = ηq(1 − q)k−1, k ∈ N
∗.

Assume µ = η/q ∈ (1,+∞).

For limn→∞ an/µ
n = θ ∈ [0,+∞], we have:

τn
(d)

−−−→
n→∞

τθ, (2)

for θ = 0, τ0 is the Kesten tree (infinite spine);

for θ ∈ (0,+∞), τθ has an infinite backbone;

for θ = +∞, τ∞ exhibits condensation at the root (only).

Furthermore (τθ , θ ∈ [0,∞]) is continuous in distribution.

Also (2) holds for µ < 1 with cn = µ−n, and for µ = 1 with cn = n2.
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Local limits for general super-critical GW trees

Representation of τ θ

Assume θ ∈ (0,+∞). τθ seen as a two-type GW tree.

The vertices are of type s (for survivor) or of type e (for extinction).

Root is of type s.

Branching property holds for vertices of type e ONLY.

A vertex of type e produces vertices of type e with offspring distrib. p′.

If µ = 1: at generation h a parent of type s has a child of type s and

there is a Poisson immigration with parameter θq/(1 − q) of

individuals of type s which are grafted uniformly on all parents of type

s. Then add vertices of type e to parents of type s.

If µ 6= 1: same spirit but with an immigration rate at generation h

which is increasing with h.
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Local limits for general super-critical GW trees

General super-critical case (Abraham-D. (2017))
Assume µ ∈ (1,∞). Set En = {zn(τ) = an} with an ≥ 1.

Recall there exists a sequence (cn, n ∈ N) such that:

zn(τ)/cn
a.s.

−−−→
n→∞

W,

with P(W = 0) = c. (Under the L log(L) cond., take cn = µn.)

For limn→∞ an/cn = θ ∈ [0,+∞), we have:

τn
(d)

−−−→
n→∞

τθ, (3)

for θ = 0, τ0 is the Kesten tree (infinite spine or a-ary tree);

for θ ∈ (0,+∞), τθ has an infinite backbone.

For θ = +∞, (3) holds if b = sup{k, p(k) > 0} < ∞ and τ∞ is then

the b-ary tree.

Furthermore (τθ , θ ∈ [0,∞)) is

continuous in distribution (for the local convergence) ;

the regular distribution of τ conditionally on {W = θ}.
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Local limits for general super-critical GW trees

Idea of the proof

For h ∈ N and t ∈ T
(h)
f , with k = zh(t):

P(rh(τn) = t) = Hn(h, k)P(rh(τ) = t) with Hn(h, k) =
Pk(Zn−h = an)

P1(Zn = an)

and Z = (Zn, n ∈ N) is under Pk a GW process started from Z0 = k.

The local cv of τn towards τθ is equivalent to the cv of Hn to some Hθ.

Precise asymptotics of Pk(Zn−h = an) for θ ∈ (0,+∞) are given by

Dubuc and Seneta (1976).

Precise asymptotics of Pk(Zn−h = an) for θ = 0 are given by

Fleischmann and Wachtel (2007) for the Schröder case a ≤ 1; and

(2009) for the Böttcher case a ≥ 2.

Precise asymptotics of Pk(Zn−h = an) for θ = +∞ in the Harris case

b < ∞ in the same spirit as for the Böttcher case.
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Local limits for general super-critical GW trees

Extremal martingale and Martin boundary (super-crit. case)

Aim: describe M the family of extremal non-negative space-time

harmonic functions (Martin boundary for the space-time GW process).

For n ≥ h, k ∈ N, we set for limn→∞ an/cn = θ ∈ [0,+∞]:

Hn(h, k) =
Pk(Zn−h = an)

P1(Zn = an)
and, if it exists, Hθ(h, k) = lim

n→∞
Hn(h, k).

If c > 0, set H0,0 = limn→∞ Hn, with an = 0, which is well defined.

Dynkin (1969): M is a subset of all the possible limits of Hn (for all

choices of sequences (an) s.t. Hn converges).

{Hθ, θ ∈ (0,∞)} ⊂ M, see Athreya and Ney (1970) and Kemeny,

Snell and Knapp (1976).
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Conclusion and Open Questions

Conclusion
g generating function of p and wk the density of W when Z0 = k.

H0,0(h, k) = c
k−1.

H0(h, k) =











kck−1g′(c)−h if a = 0,

g′(c)−h1{k=1} if a = 1,

p(a)−(ah−1)/(a−1)1{k=ah} if a ≥ 2.

Hθ(h, k) = µh wk(µ
hθ)

w1(θ)
for θ ∈ (0,+∞).

H∞(h, k) =

{

p(b)−(bh−1)/(b−1)1{k=bh} if b < ∞,

0 if p is geometric.

And, if b < ∞ or p geometric, we have:

M = {H0,0}
⋃

{Hθ, θ ∈ [0,+∞]} (up to the 0 function).
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Conclusion and Open Questions

Conjectures and open questions

g generating function of p and R = inf{r ≥ 1, g(r) < +∞}.

If µ > 1 and θ = +∞:

If R = +∞: we conjecture that τ∞ has no condensation and H∞ is

non-zero. (Similar to the Harris case b < ∞.)

If R < +∞ and g(R−) = +∞: we conjecture that the root of τ∞ has

infinite out-degree a.s. and H∞ = 0. (Similar to the geometrical case.)

If R < +∞ and g(R−) < +∞: open question.

If µ ≤ 1:

If µ < 1, when possible see τ as a super-critical GW tree conditioned to

extinction, and then transfer the results.

If this is not possible, then open question for all sequences (an).

µ = 1: open question for all sequences (an).
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