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As it is stated in Durrett, 2015:

“Metastasis, the spread of cancer to distant organs, is the most common
cause of death for cancer patients. It is very complex process: cell must
enter the blood stream (intravasation), survive the trip through the
circulatory system, leave the blood stream at its destination
(extravasation), and survive in an alien environment, e.g., cells from the
breast tissue living in bone.”
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We have two main consequences from the biological nature of cancer:

we can have more than one type of metastasis in the human organism,
possibly after local elimination of the initial tumor followed by proper
medical treatment;

arriving in a completely different environment the cancerous cell may
change its characteristics concerning lifespan and division;

stemming from the multistage theory of cancer, our main idea in this
study is to introduce a novel multi-type decomposable branching process
model of a cell population, with n types of cells, n > 2.
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1 Main results

(1) the basic functional equations for the probability generating function (p.g.f.)
of the process itself and of both the number of mutations occurred up to time t
and the number of mutations to the escape type in the whole process,
(2) probabilities of ultimate extinction of the process and those of extinction
before given moment t,
(3) properties of the time until occurrence of the first “successful” mutant,
initiating a non–extincting Bellman– Harris branching process,
(4) Immediate risk of escaping extinction,
(5) an integral equation for the distribution of the event that jointly the first
“successful” mutant does not appear and no cells of types 1, 2, 3, . . . , n exist at
time t,

(6) numerical schemes for calculating the introduced integral equations,
(7) calculations, using the given numerical algorithms, in order to demonstrate
the behaviour of the new model under different setups.
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2 Integral equations
2.1 Integral equations for p.g.f. of the process.

We denote p.g.f. of the multi-type BHBP under consideration, starting
with one cell of type i, 0 ≤ i ≤ n, with:

Fi(t; s0, s1, ..., sn) = E(s
Z0(t)
0 s

Z1(t)
1 ...sZ

n(t)
n |Zi(0) = 1, Zj(0) = 0, j 6=i),

where |sm| ≤ 1, 0 ≤ m ≤ n. Let us note that because of the inability of
the offspring of type 0 cells to change its type, it follows that

F0(t; s0, s1, ..., sn) = F0(t; s0) = E(s
Z0(t)
0 |Z0(0) = 1, Zj(0) = 0, j 6=0).

Denote (fi, Gi) is the p.g.f. of offspring and lifespan d.f. of a cell of type
i, i = 0, . . . , n, uij are mutation probabilities,

∑∞
j=0 uij = 1 for each

i = 1, . . . , n and u00 = 1.
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1. For type 0:

F0(t; s0, s1, ..., sn) = F0(t; s0)

= s0(1−G0(t)) +

∫ t

0

f0(F0(t− y; s0))dG0(y).

2. For types 1 ≤ i ≤ n:

Fi(t; s0, s1, ..., sn) = si(1−Gi(t)) +

∫ t

0

fi[ui0F0(t− y; s0)

+ ui1F1(t− y; s0, s1, ..., sn) + ...

+ uinFn(t− y; s0, s1, ..., sn)]dGi(y),

where Fi(0; s0, s1, . . . , sn) = si, |si| ≤ 1, i = 1, 2, . . . , n.

The proof follows by use of multynomial distridution and could be
seen in Vitanov and Slavtchova-Bojkova (2017, accepted).
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2.2 Number of occurred mutants
• “mutation” - whenever a daughter cell has a different type than the

mother cell;

• “mutant” - only when a daughter cell is of type 0 and has a mother
cell from any of the subcritical types;

• “trivial mutant” - whenever a daughter cell with a subcritical type
has a mother with different subcritical type.

Let us denote by Ii(t), 1 ≤ i ≤ n the random variable (r.v.) being the
number of mutants that have so far occurred until moment t in a
main model process, starting with a single cell of type i. The p.g.f. of
Ii(t), 1 ≤ i ≤ n will be denoted by:

hIi(t)(s) = E(sIi(t)), |s| ≤ 1.
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Let us denote by Ii, 1 ≤ i ≤ n the r.v. being the number of mutants
that have occurred during the whole main model process, in a process
starting with a single cell of type i. The p.g.f. of Ii, 1 ≤ i ≤ n will be
denoted by:

hIi(s) = E(sIi), |s| ≤ 1.

Using again the assumption of independence in cell reproduction, in
Vitanov and Slavtchova-Bojkova (2017, accepted) the following
integral equations are established:

hIi(t)(s) = 1−Gi(t) +

∫ t

0

fi(ui0s

+ ui1hI1(t−y)(s) + ...+ uinhIn(t−y)(s))dGi(y),

hIi(s) = fi(ui0s+ ui1hI1(s) + ...+ uinhIn(s)).
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3 Probabilities of extinction
We define the probabilities of extinction of the main model process
before fixed moment t, as follows:

qi(t) = P [Zm(t) = 0, 0 ≤ m ≤ n, t is fixed|Zi(0) = 1, Zj(0) = 0,

j 6= i], 0 ≤ i ≤ n.

Again, we are able to identify a recurrent relationship between qi(t).

Theorem 2.1. The following integral equations hold:

q0(t) =

∫ t

0

f0(q0(t− y))dG0(y),

qi(t) =

∫ t

0

fi(ui0q0(t− y) + ui1q1(t− y) + ...

+ uinqn(t− y))dGi(y), 1 ≤ i ≤ n.
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In what follows we will establish the limit behaviour of the
probabilities qi(t), 0 ≤ i ≤ n.

Considering the reasoning involved in the derivation of qi, it follows
that qi correspond to the probabilities of ultimate extinction of the
main model process. We can denote these probabilities as:

qi = P [Z0(t) = Z1(t) = ... = Zn(t) = 0 for some t > 0|

Zi(0) = 1, Zj(0) = 0, j 6=i], 0≤i≤ n.

Now we are able to obtain relationships between p.g.f. fi(s) and qi,
0 ≤ i ≤ n:

Firstly, from Jagers, p. 140, we immediately have q0 = f0(q0).
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Secondly, the probability of final extinction of a process starting with
a single cell of type i, qi, 1 ≤ i ≤ n depends only on q0 because type
0 cells are the only ones that are supercritical. If the process starts
with a single cell of type i, the number of mutants that occur during
the whole process is modeled through the r. v. Ii. In order for the
main model process to become extinct, it is sufficient that with all
occurring mutants start processes which will die out. Using the total
probability argument and if denoting by rik = P (Ii = k) we obtain:

qi =
∞∑
k=0

rikq
k
0 = E(qIi0 ) = hIi(q0), 1 ≤ i ≤ n.

In addition, for s = q0 we have

qi = hIi(q0) = fi(ui0q0 + ui1hI1(q0) + ...+ uinhIn(q0)).
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4 Time until occurrence of a mutant,
starting a non-extincting BHBP

We introduce r.v. Ti, denoting the time it takes for the occurrence of
the first mutant, initiating a non–extincting BHBP main model. Such
a mutant, leading to non–extincting processes, is called “successful”
and the fact that it starts such a process is often paraphrased as “the
process escaping extinction”. We define Ti =∞ as the event that no
successful mutant has occurred during the process. That way
Ti∈(0,∞].
Note that the proofs for the case in which the process starts with a
single cell of type i, 1 ≤ i ≤ n are analogous to those in
Slavtchova–Bojkova (2016, LNS, Springer), with the difference that
Ii, Ii(t), and qi have p.g.f. of rather different form.
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Theorem 3.1 Let the process starts with 1 cell of type i, 1 ≤ i ≤ n.
Then the distribution of r.v. Ti has the following properties:

(i) P (Ti > t|Zi(0) = 1, Zm(0) = 0,m6=i) ≡ Qi,t = hIi(t)(q0),

(ii) P (Ti =∞|Zi(0) = 1, Zm(0) = 0,m6=i) = qi = hIi(q0),

(iii) E(Ti|Ti <∞, Zi(0) = 1, Zm(0) = 0,m6=i) =

1
1−qi

∫ ∞
0

[
hIi(t)(q0)− hIi(q0)

]
dt.



4 Time until occurrence of a mutant, starting a non-extincting BHBP 17

If the process starts with ki particles of type i, 1 ≤ i ≤ n, then the
distribution of r.v. T has the following properties:

(iv) P (Ti > t|Zi(0) = ki, 1 ≤ i ≤ n) =

hk1

I1(t)
(q0)×hk2

I2(t)
(q0)×...×hkn

In(t)
(q0),

(v) P (Ti =∞|Zi(0) = ki, 1 ≤ i ≤ n) = qk1
1 ×q

k2
2 ×...×qkn

n

= hk1

I1
(q0)×hk2

I2
(q0)×...×hkn

In
(q0),

(vi) E(Ti|Ti <∞, Zi(0) = ki, 1 ≤ i ≤ n) =

=
1

1−qk1
1 ×q

k2
2 ×...×q

kn
n

∫ ∞
0

[hk1

I1(t)
(q0)×hk2

I2(t)
(q0)×...×hkn

In(t)
(q0)−

− hk1

I1
(q0)×hk2

I2
(q0)×...×hkn

In
(q0)]dt.
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5 Immediate risk of escaping extinction

Another useful characteristic associated with the occurrence of successful mutants
in the main BHBP model is the probability of a “successful” mutant occurring
within a very small interval dt after moment t. More precisely, this probability will
be called “immediate risk of escaping extinction”.

If there are no subcritical cells left in the cell population, the probability of
occurrence of a “successful” mutant is 0. Therefore we will investigate a
modification of the standard formulation of the hazard function. Let us define a
modified hazard function gi(t) for each subcritical type 1 ≤ i ≤ n in the following
way:

gi(t)dt = P (Ti ∈ (t, t+ dt]|Ti > t,

n∑
j=1

Zj(t) > 0, Zi(0) = 1, Zm(0) = 0,m 6=i).

In other words, we will consider the probability of a “successful” mutant occurring
immediately after moment t, under the additional condition that at moment t the
population has at least one cell from an arbitrary subcritical type.
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From this definition we have:

gi(t)dt =
P (Ti∈(t, t+ dt]|Zi(0) = 1, Zm(0) = 0,m 6=i)

P (Ti > t,
∑n

j=1Z
j(t) > 0|Zi(0) = 1, Zm(0) = 0,m 6=i)

=
P (Ti∈(t, t+ dt]|Zi(0) = 1, Zm(0) = 0,m 6= i)

Qi,t − P (Ti > t,
∑n

j=1 Z
j(t) = 0|Zi(0) = 1, Zm(0) = 0,m 6= i)

,

which can be rewritten as:

gi(t) =
F

(1)
Ti

(t|Zi(0) = 1, Zm(0) = 0,m 6= i)

Qi,t − P (Ti > t,
∑n

j=1 Z
j(t) = 0|Zi(0) = 1, Zm(0) = 0,m 6= i)

where F
(1)
Ti

is the probability density function of Ti and

P (Ti > t|Zi(0) = 1, Zm(0) = 0,m 6=i) ≡ Qi,t = hIi(t)(q0)
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To simplify the notation, we introduce

Vi,t = P (Ti > t,
n∑

j=1

Zj(t) = 0|Zi(0) = 1, Zm(0) = 0,m6=0, i).

Theorem 4.1. The joint probability of the event that jointly the
first “successful” mutant does not appear and no cells of types
1, 2, 3, . . . , n exist at time t satisfies the following integral equation:

Vi,t =

∫ t

0

fi

(
ui0q0 + ui1V1,t−y + . . .+ uinVn,t−y

)
dGi(y),

for i = 1, 2, . . . , n.

Theorem 4.2. There exist limt→∞ Vi,t = Vi, such that Vi,t ≤ Vi,
∀t≥0, 1 ≤ i ≤ n.
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6 Schemes for numerical calculations

6.1 Calculation of hIi(t)(s), hIi(s) and the time
until the occurrence of a mutant, starting a
non–extincting main BHBP

We extend the algorithm provided in Slavtchova–Bojkova (CSDA,
2017) in the case of n+ 1 types, provided the offspring of the cells
with indices i, 1 ≤ i ≤ n can be of any type (including type 0), the
offspring of type 0 cells may be of type 0 only.

For every 1 ≤ i ≤ n we have:

hIi(t)(s) = 1−Gi(t)

+

∫ t

0

fi(ui0s+ ui1hI1(t−y)(s) + ...+ uinhIn(t−y)(s))dGi(y).
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Below we will assume that s is fixed. I. Let t = 0. For every
1 ≤ i ≤ n we have

hIi(0)(s) = 1−Gi(0) = 1, hIi(0)(s) = 1.

Then we have: hI1(0)(s) = hI2(0)(s) = . . . = hIn(0)(s) = 1.

II. Let t = h. We approximate the integral∫ h

0

fi(ui0s+ ui1hI1(h−y)(s) + ...+ uinhIn(h−y)(s))dGi(y)

using the right rectangle rule:

hIi(h)(s)≈1−Gi(h)

+ fi(ui0s+ ui1hI1(h−h)(s) + ui2hI2(h−h)(s) + ...+

+ uinhIn(h−h)(s))×(Gi(h)−Gi(0)),
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hIi(h)(s)≈1−Gi(h)

+ fi(ui0s+ ui1hI1(0)(s) + ui2hI2(0)(s) + ...+

+ uinhIn(0)(s))×Gi(h).

Now we have:

hI1(0)(s) = 1,

hI1(h)(s)≈1−G1(h) + f1(u10s+ u11 + u12 + ...+ u1n)×G1(h),

hI2(0)(s) = 1,

hI2(h)(s)≈1−G2(h) + f2(u20s+ u21 + u22 + ...+ u2n)×G2(h),

...

hIn(0)(s) = 1,

hIn(h)(s)≈1−Gn(h) + fn(un0s+ un1 + un2 + ...+ unn)×Gn(h).
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III. Let t = 2h. Consider:∫ 2h

0

fi(ui0s+ ui1hI1(2h−y)(s) + ...+ uinhIn(2h−y)(s))dGi(y) =

=

∫ h

0

fi(ui0s+ ui1hI1(2h−y)(s) + ...+ uinhIn(2h−y)(s))dGi(y) +

+

∫ 2h

h

fi(ui0s+ ui1hI1(2h−y)(s) + ...+ uinhIn(2h−y)(s))dGi(y).

Again, we approximate the integrals through the right rectangle rule:

hIi(2h)(s)≈1−Gi(2h)

+ fi(ui0s+ ui1hI1(h)(s) + ui2hI2(h)(s) + ...+ uinhIn(h)(s))

×(Gi(h)−Gi(0))

+ fi(ui0s+ ui1 + ui2 + ...+ uin)×(Gi(2h)−Gi(h)).
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6.2 Approximation of
P (T > t,

∑n
j=1 Z

j(t) = 0|Zi(0) = 1, Zm(0) = 0,m6=0, i)

I. Let t = 0. We have Vi,0 = 0, 1 ≤ i ≤ n.

II. Let t = kh. For each i, 1 ≤ i ≤ n we have:

Vi,kh≈
k∑

j=1

fi(ui0q0+ui1V1,(k−j)h+...+uinVn,(k−j)h)×(Gi(jh)−Gi((j−1)h)).
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6.3 Approximation of modified hazard functions
gi(t), 1 ≤ i ≤ n

gi(t) =
F

(1)
T (t|Zi(0) = 1, Zm(0) = 0,m 6=i)

Qi,t − Vi,t

I. Forward difference approximation: we discretize the [0, T ] interval with
step h, i.e. we use points 0, h, 2h, ..., Nh = T, (n+ 1)h, thus yielding

F (1)(kh) =
FT ((k + 1)h)− FT (kh)

h
+O(h), k = 0, 1, ...N.

II. Centered difference approximation: we discretize the [0, T ] interval with
step h, i.e. we use points 0, h, 2h, ..., Nh = T, (n+ 1)h. thus yielding

F (1)(kh) =
FT ((k + 1)h)− FT ((k − 1)h)

2h
+O(h2), k = 1, 2, ..., N.
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6.4 Examples –three setups

In this section we will present the results obtained from calculations done in three
setups. These setups differ from each other in the type of distributions used for
modeling the lifespan of the distinct cell types. In general, setup 1 considers
distributions which do not exhibit heavy–tails, i.e. their tails are not exponentially
bounded, setup 2 is the same as setup 1 except that a heavy–tailed distribution is
used for one of the subcritical types, and setup 3 considers only heavy–tailed
distributions. More precisely, we will restrain ourselves with the cases where we
model all cell types in setup 1 with exponential distributions, in setup 2 we will
change the distribution of type 1 cells from exponential to lognormal, and in setup
3 we will model all cell types with lognormal distributions. In our full research we
used numerous different combinations of exponential, truncated normal, gamma,
lognormal, Pareto, Weibull and Cauchy distributions, throughout cell types
0, 1, ..., n, all of those combinations yielded similar results as those stated below.
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Comparison of qi(t) and qi for the first setup

fi(s) ui0 ui1 ui2 ui3 lifespan distr.

Type 0 0.2s0 + 0.45s2 + 0.35s4 1 Exp(2)

Type 1 0.64s0 + 0.36s2 0.05 0.7 0.1 0.15 Exp(3)

Type 2 0.7s0 + 0.12s2 + 0.18s4 0.1 0.07 0.8 0.03 Exp(4.5)

Type 3 0.78s0 + 0.22s4 0.01 0.07 0.02 0.9 Exp(6)

Our calculations are done with t = 300 and h = 0.01.
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Comparison of qi(t) and qi for the second setup

fi(s) ui0 ui1 ui2 ui3 lifespan distr.

Type 0 0.2s0 + 0.45s2 + 0.35s4 1 Exp(2)

Type 1 0.64s0 + 0.36s2 0.05 0.7 0.1 0.15 LN(0.7, 0.9)

Type 2 0.7s0 + 0.12s2 + 0.18s4 0.1 0.07 0.8 0.03 Exp(4.5)

Type 3 0.78s0 + 0.22s4 0.01 0.07 0.02 0.9 Exp(6)
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Comparison of qi(t) and qi for the third setup

fi(s) ui0 ui1 ui2 ui3 lifespan distr.

Type 0 0.2s0 + 0.45s2 + 0.35s4 1 LN(0.5, 1)

Type 1 0.64s0 + 0.36s2 0.05 0.7 0.1 0.15 LN(0.7, 0.9)

Type 2 0.7s0 + 0.12s2 + 0.18s4 0.1 0.07 0.8 0.03 LN(0.35, 1.1)

Type 3 0.78s0 + 0.22s4 0.01 0.07 0.02 0.9 LN(2.5, 0.2)
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6.5 Comparison of hIi(t)(q0) and hIi(q0)

t = 300 and h = 0.01. The value of q0 is 0.2233 as was already calculated.

Behaviour of hIi(t)(q0), i = 1, 2, 3 in setup 1.
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Behaviour of hIi(t)(q0), i = 1, 2, 3 in setup 2.
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Behaviour of hIi(t)(q0), i = 1, 2, 3 in setup 3.
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6.6 Comparison of the modified hazard functions gi(t)

h = 0.1 for setups 1-3 and we begin with setup 1, t = 300.

Behaviour of gi(t), i = 1, 2, 3 in setup 1.
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t = 500

Behaviour of gi(t), i = 1, 2, 3 in setup 2.



6 Schemes for numerical calculations 36

t = 1000

Behaviour of gi(t), i = 1, 2, 3 in setup 3.
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7 Conclusions

Once again we state that the numerical results presented in the current
paper are a subset of all calculations we made using exponential, truncated
normal, gamma, lognormal, Pareto, Weibull and Cauchy distributions with
various values for their parameters.
We argue that modelling lifespan of cancer cell types with heavy–tailed
distributions is a perspective approach as it yields close to real world
behaviour for gi(t) without the need of inflating any of the parameters of
the distributions involved. However, one should be cautious with the
presence of oscillations when calculating for large t. Whether possible
oscillations are a result of a deficiency in our model and corresponding
numerical calculation scheme, or are a manifestation of a real–world
behavior of the cancer disease, is open for exploration.

Remark 2. We have used PYTHON 3.5.2. for implementing the numerical
methods.
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