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Introduction The case of Galton Watson process

Fixed environment without interactions

Let Z be a Galton Watson process :

Zn+1 =
Zn

∑
i=1

Li,n

where (Li,n ∶ i ,n ≥ 0) are i.i.d. and distributed as L ∈ N.

Let N ∈ N and consider the Galton Watson process Z N with
reproduction random variable LN and Z N

0 = [z0N] and

Y N
t = 1

N
Z N
[vN t],

for t ≥ 0, where vN →∞ gives the time scale.

When does Y N converge in D(R+, [0,∞])? To which object?
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Introduction The case of Galton Watson process

Solved by Helland, Lamperti (time change of a random walk) and
Grimwall (tightness + convergence of generating function).

Necessary and sufficient condition :
convergence of the random walk with step LN to a Lévy process
convergence of triangular arrays

lim
N→∞

vNN E (hd((LN − 1)/N)) = αd ;

lim
N→∞

vNN E (h2
d((L

N − 1)/N)) = βd ;

lim
N→∞

vNN E (f ((LN − 1)/N)) = ∫
∞

0
fνd ,

for f continuous bounded and null in a neighborhood of 0, where
hd is a truncation function and ∫(0,∞)

(1 ∧ v2)νd(dv) <∞.
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Introduction The case of Galton Watson process

The limiting object is a Continuous State Branching Processes (CSBP)
Time change of a Lévy process (Lamperti transform)
Unique pathwise solution of the following SDE (Fu & Li)

Yt = z0 + αd ∫
t

0
Ysds + σd ∫

t

0

√
YsdBd

s +

+ ∫
t

0
∫
(0,∞)2

1θ≤Ys−hd(z)Ñd + ∫
t

0
∫
(0,∞)2

1θ≤Ys−(z − hd(z))Nd ,

where B is a brownian motion, Nd is a Poisson measure on (R+)3

with intensity dtdzνd(dθ) and σ2
d = βd − ∫(0,∞)

h2
d νd .
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Introduction In random environment

Branching processes in random environment

We consider a sequence of random environments (EN
k ∶ k ≥ 0) and

Z N
n+1 =

Z N
n

∑
i=1

LN
i,n(E

N
n )

where for each environment e, (LN
i,n(e) ∶ i ≥ 1,n ≥ 0) are i.i.d. and

distributed as a random variable L(e) ∈ N a.s.

What about the scaling limits of

Y N
t = 1

N
Z N
[vN t]??
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Introduction In random environment

Convergence

Z N
n+1 =

Z N
n

∑
i=1

LN
i,n(E

N
n )

Weak convergence of Y N = Z N
[vN .]

/N to a CSBP in random
environment.

In some stable cases (stable branching mechanism), time change
techniques of Kurtz (generalized by Borovkov)
with finite variations of the limiting drift t → αt :

Yt = z0 + ∫
t

0
Ysdαs + ∫

t

0

√
YsσsdBd

s + demographical jumps

characterization of the dual problem (quenched Laplace exponent
using quenched branching property) by Bansaye and Simatos.
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Introduction With interactions

Let us take into account density dependance for reproduction laws

Z N
n+1 =

Z N
n

∑
i=1

LN
i,n(Z

N
n )

where for each size z, (LN
i,n(z) ∶ i ≥ 1,n ≥ 0) are i.i.d. and distributed as

a random variable L(z) ∈ N a.s.

Weak convergence to CSBP with interactions of the form

Yt = z0 + ∫
t

0
g(Ys)ds + σd ∫

t

0

√
YsdBd

s +

+ ∫
t

0
∫
(0,∞)2

1θ≤Ys−hd(z)Ñd + ∫
t

0
∫
(0,∞)2

1θ≤Ys−(z − hd(z))Nd ,

see works of Pardoux & Dramé for some class in continuous time with
moment assumptions (tightness + martingale problem).
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Introduction With interactions

Problem : the branching property fails and without stability no relevant
time change found.

Objectives :
go beyond these assumptions (finite variations, moment
assumptions, stability...) and extend the general criterion of
convergence of Galton-Watson processes
capture more complex population structures (with several
species : competition, predation, sexe, mutations...)

for processes of the form
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z N
n+1 = ∑

FN(Z N
n )

i=1 LN
i,n(Z

N
n ,E

N
n ),

SN
n+1 = SN

n +EN
n

where for each (z,e), (LN
i,n(z,e) ∶ i ≥ 1,n ≥ 0) are i.i.d. and distributed

as a random variable L(z,e) ∈ N a.s. and (EN
n ∶ n ≥ 0) are i.i.d.
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General statements for tightness and identification The basic idea

The Markov chain (Z N ,SN) is characterized by its transition and
roughly its law is given by the conditional increments :

E(H(Z N
1 − z,EN

0 )∣Z N
0 = z)

for a rich enough class of functions H.

For convergence of scaled Markov chains, this can be made rigorous
by considering the convergence of the characteristics of the semi
martingale

(Z N
[vN .]

/N,SN
[vN .]

).

[Jacod Shirayev] : one then needs to focus on a class of functions H
null in zero containing a truncation function, its square and functions
null in a neighborhood of zero.

vNE(H(Z N
1 /N − z,EN

0 )∣Z N
0 = Nz)

Vincent Bansaye (E. polytechnique) 10th april, Badajoz 9 / 17



General statements for tightness and identification The basic idea

The Markov chain (Z N ,SN) is characterized by its transition and
roughly its law is given by the conditional increments :

E(H(Z N
1 − z,EN

0 )∣Z N
0 = z)

for a rich enough class of functions H.

For convergence of scaled Markov chains, this can be made rigorous
by considering the convergence of the characteristics of the semi
martingale

(Z N
[vN .]

/N,SN
[vN .]

).

[Jacod Shirayev] : one then needs to focus on a class of functions H
null in zero containing a truncation function, its square and functions
null in a neighborhood of zero.

vNE(H(Z N
1 /N − z,EN

0 )∣Z N
0 = Nz)

Vincent Bansaye (E. polytechnique) 10th april, Badajoz 9 / 17



General statements for tightness and identification The basic idea

Convergence of the linear operator H → GNH :

GNH(z) = vNE (H(Z N
1 /N − z,EN

0 )∣Z N
0 = Nz)

To exploit the (conditional !) independence structure in the individual
based model, one may prefer to focus on functions of the form

Hk ,`(u,v) = 1 − e−ku−`v

(rich since its generates an algebra separating points).
We obtain

GN
k ,`H(z) = vN (1 −E (e−`E

N
0 PN

k (z,EN
0 )FN(Nz)))

with
PN

k (z,e) = E (e−k(LN(Nz,e)−1)/N) .
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General statements for tightness and identification The basic idea

Convergence of
(Z N

[vN .]
/N,SN

[vN .]
).

captured via the convergence of functions

GNHk ,`(z) = vN (1 −E (e−`E
N
0 PN

k (z,EN
0 )FN(Nz)))

as N →∞ with
PN

k (z,e) = E (e−k(LN(zN,e)−1)/N) .

, characterization in terms of scaling limit of the joint law of the
reproduction variable and random environment

, generalizes the necessary and sufficient condition for
Galton-Watson processes

§ uniformity with respect to z is required in the convergence to apply
the technics (Taylor expansions and some analysis involved using
convexity or boundedness argument).
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General statements for tightness and identification Statement

Reduction to H

Let X N be a sequence Markov chains taking values in a subset of Rd .
Let H be a functional space which is dense in the set of regular
functions null at zero for a norm equivalent to
∥H∥ =∥ u → H(u)/(1 ∧ u2) ∥∞ and

GN
x (H) = vN E(H(X N

1 −X N
0 ) ∣X N

0 = x),

If GN
. is bounded and converges uniformly to G.H for any H ∈H,

then X N
[vN .]

is tight.

If the limiting operator G.H is continuous for any H ∈H, then any
limiting value of X N is a semimartingale whose characteristics are
determined by (G.H ∶ H ∈H)
If uniqueness holds for the associated SDE, then X N converges to
the solution of the SDE.
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Applications Branching processes in Lévy environments with interactions

Let

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z N
n+1 = ∑

Z N
n

i=1 LN
i,n(Z

N
n ,E

N
n ),

SN
n+1 = SN

n +EN
n

Consider
X N

n = (e−Z N
n /N ,SN

n )

and

H = {(v ,w)→ vke−`w ∶ k ≥ 1, ` ≥ 0} ∪ {(v ,w)→ 1 − e−`w ∶ ` ≥ 1}.

(local Stone Weierstrass theorem for the density) to get tightness and
identification.

Here pathwise uniqueness of the SDE obtained applying Pu & Li (see
also Palau & Pardo Millan).
Vincent Bansaye (E. polytechnique) 10th april, Badajoz 13 / 17



Applications Branching processes in Lévy environments with interactions

Let

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z N
n+1 = ∑

Z N
n

i=1 LN
i,n(Z

N
n ,E

N
n ),

SN
n+1 = SN

n +EN
n

Consider
X N

n = (e−Z N
n /N ,SN

n )

and

H = {(v ,w)→ vke−`w ∶ k ≥ 1, ` ≥ 0} ∪ {(v ,w)→ 1 − e−`w ∶ ` ≥ 1}.

(local Stone Weierstrass theorem for the density) to get tightness and
identification.

Here pathwise uniqueness of the SDE obtained applying Pu & Li (see
also Palau & Pardo Millan).
Vincent Bansaye (E. polytechnique) 10th april, Badajoz 13 / 17



Applications Branching processes in Lévy environments with interactions

Examples

Convergence of cooperative GW processes to cooperative CSBP
(potentially explosive) :

Zt = z0 + αd ∫
t

0
Zsds + ∫

t

0
Zsg(Zs)ds + σd ∫

t

0

√
ZsdBd

s

+ ∫
t

0
∫
(0,∞)2

1θ≤Zs−hd(z)Ñd + ∫
t

0
∫
(0,∞)2

1θ≤Zs−(z − hd(z))Nd

when g is regular and does not tend too fast to infinity.
Convergence of Galton Watson process in random environment
with competition to logistic Feller diffusion in a Brownian
environment

Zt = z0 + αd ∫
t

0
Zsds − c ∫

t

0
Z 2

s ds + σe ∫
t

0
ZsdBe

s + σd ∫
t

0

√
ZsdBd

s .
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Applications Other applications

Wright Fisher in a Lévy environment

For each N ≥ 1, it is recursively defined for n ≥ 0 by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z N
n+1 = ∑

N
i=1 BN

n,i(Z
N
n /N,EN

n ),

SN
k+1 = SN

k + EN
k ,

and (EN
k )k are i.i.d. with values in (−1,+∞) and (BN

k ,i(z,e);k ≥ 1, i ≥ 1)
are Bernoulli random variable EN(z,e) defined by

P(BN(z,e) = 1) = p(z,e) ; P(BN(z,e) = 0) = 1 − p(z,e).

In particular, Wright Fisher diffusion with selection in a Lévy
environment

p(z,e) = z(1 + e)
z(1 + e) + 1 − z
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Applications Other applications

Multi dimensional model (bisexual Galton Watson)

Consider a bisexual Galton-Watson model with aging and classical
monogamous mating (with mutual fidelity)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F N
n+1 = ∑

F N
n

i=1 E
f ,N
n,i +∑MN

n ∧F N
n

j=1 Lf ,N
n,j ,

MN
n+1 = ∑

MN
n

i=1 E
m,N
n,i +∑MN

n ∧F N
n

j=1 Lm,N
n,j ,

Assume for ● ∈ {f ,m},

lim
N→∞

vNN E(h(LN
● /N)) = α●; lim

N→∞
vNN E(h2(LN

● /N)) = β●;

lim
N→∞

vNN E(g(LN
● /N)) = ∫

∞

0
gν●.
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Applications Other applications

Tightness and identification of the limiting values to solutions of

Ft = F0 − pf ∫
t

0
Fsds + αf ∫

t

0
Fs ∧Ms ds + σf ∫

t

0

√
Fs ∧MsdBf

s +

∫
t

0
∫
(0,∞)2

1θ≤Fs−∧Ms−h(z)Ñ
f + ∫

t

0
∫
(0,∞)2

1θ≤Fs−∧Ms−(z − h(z))N f ,

Mt = M0 − pm ∫
t

0
Fsds + αm ∫

t

0
Fs ∧Ms ds + σm ∫

t

0

√
Fs ∧MsdBm

s +

∫
t

0
∫
(0,∞)2

1θ≤Fs−∧Ms−h(z)Ñ
m + ∫

t

0
∫
(0,∞)2

1θ≤Fs−∧Ms−(z − h(z))Nm,

What about UNIQUENESS??
genealogies? infinite dimension?
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