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Measles

Reported case of measles, 1945–70. Source: W.H.O. bulletins. Taken
from Cliff and Haggett (1980).
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Population model

Process indexed by a target population size n.

Let N (n)(t) be the population size at time t. Then {N (n)(t) : t ≥ 0} is
modelled as a Markov immigration-death process with constant
immigration rate nµ and individual death rate µ.

In the absence of infection, if n−1N (n)(0) → s0 as n → ∞ then
{N̄ (n)(t) : t ≥ 0} = {n−1N (n)(t) : t ≥ 0} converges almost surely to
the deterministic model

ds

dt
= µ− µs, s(0) = s0,

having solution

s(t) = 1− (1− s0)e
−µt (t ≥ 0).
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Epidemic model

Homogeneously mixing population.

SIR (susceptible → infective → recovered)

Fraction κn of all births (i.e. immigrants) are infectives, with the
remaining births being susceptibles.

While infectious, each infective infects any given susceptible at rate
n−1λn, independently between each distinct pair of individuals.

Each infective recovers and becomes permanently immune at rate γn.

Let S(n)(t), I(n)(t) and R(n)(t) denote respectively the number of
susceptibles, infectives and recovered at time t. Assume that
I(n)(0) = 0 and S̄(n)(0) → s0 as n → ∞. (The initial number of
recovered R(n)(0) has no effect on the ensuing epidemic.)
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Effect of populations sizen
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Effect of rate of disease dynamics
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Simulation of epidemic model
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Asymptotic regimes

We assume that the target population size n → ∞ such that

(a) κnn → κ, so the total importation rate of infectives
µnκn → µκ > 0;

(b) λn = cn and γn = cnγ, where γ ∈ (0, 1).

Asymptotic regimes As n → ∞:

(i) cn/ log n → ∞,

(ii) cn/ log n → c ∈ (0,∞),

(iii) cn → ∞ slower than log n,

(iv) cn → c′ ∈ (0,∞).
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SIR epidemic without demography

Suppose that µ = 0. Then
{(

S(n)(t), I(n)(t)
)

: t ≥ 0
}

has transition rates:

Transition Type Rate

(s, i) → (s− 1, i+ 1) infection of susceptible n−1λnsi

(s, i) → (s, i− 1) recovery of infective γni

Suppose that I(n)(0) = 1 and n → ∞ such that λn → 1,
γn → γ ∈ (0, 1) and S̄(n)(0) → s0 ∈ (0, 1).

Then
{

I(n)(t) : t ≥ 0
}

converges almost surely to a
time-homogeneous linear birth-and-death process, Z say, with birth
rate s0, death rate γ and one initial individual.

Z is supercritical ⇐⇒ s0 > γ.
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SIR epidemic without demography
Let D(n) = inf{t : I(n)(t) = 0} be the duration of the epidemic, so the final number

of susceptibles is S(n)(D(n)), and let D̂(n) = inf{t : I(n)(t) ≥ logn}. Then

lim
n→∞

P
(

D̂(n) < ∞
)

=







0 if s0 ≤ γ,

1− γ

s0
if s0 > γ.

If D̂(n) < ∞ then, as n → ∞,
{(

S̄(n)(t), Ī(n)(t)
)

: t ≥ 0
}

converges to a random time translate of the deterministic
model

ds

dt
= −si,

di

dt
= si− γi;

S̄(n)(D(n))
D

−→ s0(1− τγ(s0)), where for s > γ, τγ(s) is the unique strictly positive
solution of the equation

1− τ = e
−

1
γ
sτ

;

there exists d ∈ (0,∞) such that D(n)/ log n
p

−→ d.

(Barbour (1975), von Bahr and Martin-Löf (1980), Barbour and Reinert (2013))
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Asymptotic regime (i): cn/ log n → ∞

Let S = {S(t) : t ≥ 0} be a Markovian regenerative process, with
renewals occurring whenever S(t) = γ. Between each renewal, S(t)
increases deterministically according to

S′(t) = µ(1− S(t)),

except for one down jump (from above γ to below γ), corresponding to
a major outbreak.

Under asymptotic regime (i), S̄(n) ⇒ S as n → ∞, where ⇒ denotes
convergence in the Skorohod M1 (or M2) topology.

Note that S̄(n) does NOT converge to S in the usual Skorohod J1

topology as the sample paths of S are almost surely discontinuous but
the sample paths of S̄(n) contain only jumps of size n−1, so are
“close" to being continuous for large n.
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Asymptotic regime (i) – limiting processS

If a renewal occurs at time 0 and T is the time of the down jump then

S(t) = 1− (1− γ)e−µt (0 ≤ t < T ).

An infective immigrating at time t since the last renewal has probability
1− γ

S(t) of triggering a major outbreak, so, for t ≥ 0,

P(T ≤ t) = 1− exp

[

−µκ

∫ t

0

(

1−
γ

S(u)

)

du

]

= 1− e−µκt

(

eµt − 1 + γ

γ

)κγ

.

After the down jump, S(T ) = S(T−)(1− τγ(S(T−))).

Properties of S such as the inter-arrival time distribution, the
distribution of the down-jump size and the stationary distribution of
S(t) are available.
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Asymptotic regime (ii) – invasion

Recall λn = cn, γn = cnγ, where γ ∈ (0, 1), and limn→∞ cn/ logn = c.

Suppose that I(n)(0) = 1, limn→∞ S̄(n)(0) = ŝ0 ∈ (0, 1] and there is no
immigration of infectives.

While I(n)(t) ≤ n/(logn)2,
{

I(n)(t) : t ≥ 0
}

can be approximated by a
time-inhomogeneous linear birth-and-death process

{

Z(n) : t ≥ 0
}

,
with birth rate λ(n)(t) = cn [1− (1− ŝ0)e

−µt] and death rate
µ(n)(t) = γcn + µ.

Let t(n)1 = inf{t ≥ 0 : Z(n)(t) ≥ n/(log n)2}. Then, as n → ∞,

P(t
(n)
1 < ∞) → max

(

1−
γ

ŝ0
, 0

)

and t
(n)
1 |t

(n)
1 < ∞

p
−→ tG,

where tG = tG(c, γ, µ, ŝ0) is the unique solution in (0,∞) of

c

[

(1− γ)t−
(1− ŝ0)

µ

(

1− e−µt
)

]

= 1.
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Asymptotic regime (ii) – body of epidemics

Suppose that I(n)(0) =
⌈

n/(log n)2
⌉

and

S̄(n)(0)
p

−→ s̃1 = 1− (1− ŝ0)e
−µtG as n → ∞.

Let u(n)1 = inf
{

t ≥ 0 : I(n)(t) ≤ n
(logn)2 and S̄(n)(t) < γ

}

.

Then, since cn → ∞ as n → ∞, the main body of an
epidemic is instantaneous in the limit as n → ∞, so

(i) u
(n)
1

p
−→ 0 as n → ∞; and

(ii) S̄(n)(u
(n)
1 )

p
−→ s1 = s̃1(1− τγ(s̃1)) as n → ∞.
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Asymptotic regime (ii) – fade out

Suppose that I(n)(0) =
⌊

n/(log n)2
⌋

and S̄(n)(0)
p

−→ s1 < γ as
n → ∞.

Then
{

I(n)(t) : t ≥ 0
}

can be approximated by the birth-and-death
process

{

Z(n)(t) : t ≥ 0
}

with birth rate λ(n)(t) = cn [1− (1− s1)e
−µt]

and death rate µ(n)(t) = γcn + µ.

As n → ∞,
{

Z(n)(t) : t ≥ 0
}

is critical at time t = ť = 1
µ

(

1−s1
1−γ

)

.

Using Kendall (1948),

E
[

Z(n)(ť)
]

=
⌊

n/(logn)2
⌋

exp

{

cn

[

(1− γ)ť−
(1− s1)

µ

(

1− e−µť
)

]

− µť

}

=
⌊

n/(logn)2
⌋

n
cn

log n

[

(1−γ)ť−
(1−s1)

µ

(

1−e−µť
)]

e−µť.

limn→∞ E
[

Z(n)(ť)
]

= 0 ⇐⇒ c
[

(1− γ)ť− (1−s1)
µ

(

1− e−µť
)]

< −1.
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Asymptotic regime (ii) – fade out

Let scrit = scrit(γ, µ, c) = γ − (1− γ)h−1
(

µ
c(1−γ)

)

, where

h(x) = x− log(1 + x) (x ≥ 0). Then,

lim
n→∞

P(fade out) =







1 if s1 < scrit,

0 if s1 > scrit.

For fixed (γ, µ),

scrit is monotonically increasing in c;

scrit ↑ γ as c → ∞ and scrit ↓ −∞ as c ↓ 0.

There exists ccrit = ccrit(γ, µ) such that if c < ccrit then

lim
n→∞

P(fade out) = 0 for all ŝ0 ∈ (0, 1].
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Asymptotic regime (ii) – endemicity

Suppose s1 > scrit and t̄
(n)
2 > 0 solves E

[

Z(n)(t̄
(n)
2 )

]

=
⌈

n/(logn)2
⌉

.

Then
⌊

n/(log n)2
⌋

exp

{

cn

[

(1− γ)t̄
(n)
2 −

(1− s1)

µ

(

1− e−µt̄
(n)
2

)]

− µt̄
(n)
2

}

=
⌈

n/(logn)2
⌉

,

so, t̄(n)2 → t̂2 as n → ∞, where t̂2 is the unique solution in (0,∞) of

(1− γ)t−
(1− s1)

µ

(

1− e−µt
)

= 0.

Let t̂(n)2 = inf
{

t > 0 : I(n)(t) ≥ n
(logn)2 and S̄(n)(t) > γ

}

. Then, as
n → ∞,

t̂
(n)
2

p
−→ t̂2 and S̄(n)(t̂

(n)
2 )

p
−→ s̃2 = 1− (1− s1)e

−µt̂2 .

Note that t̂2 and s̃2 are independent of c.
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Asymptotic regime (ii) – endemicity

For s̃1 ∈ (γ, 1], let fE(s̃1) = s̃1(1− τγ(s̃1)) and for s1 ∈ (scrit, γ), let
fR(s1) = 1− (1− s1)e

−µt̂2 .

Suppose that s̃1 ∈ (γ, 1] satisfies s1 = fE(s̃1) > scrit. Then, as n → ∞

the epidemic process is encapsulated by the iterative map given by

s̃k = fR(sk−1) and sk = fE(s̃k) (k = 2, 3, . . . ).

For k = 2, 3, . . . let t̂k be the unique solution in (0,∞) of

(1− γ)t−
(1− sk−1)

µ

(

1− e−µt
)

= 0.

t̂k is the time elapsing between the (k − 1)th and kth down jump in the
limiting process S.
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Asymptotic regime (ii) – endemicity

Lemma

(a) For s̃ ∈ (γ, 1], we have fE(s̃) < γ and γ − fE(s̃) < s̃− γ.

(b) For s ∈ (scrit, γ), we have fR(s) > γ and fR(s)− γ < γ − s.

Theorem Suppose that s̃1 ∈ (γ, 1] satisfies s1 = fE(s̃1) > scrit. Then

(a) for k = 1, 2 . . . , s̃k > s̃k+1 > γ and sk < sk+1 < γ;

(b) limk→∞ s̃k = limk→∞ sk = γ;

(c) t̂2 > t̂3 > · · · > 0 and
∑

∞

k=2 t̂k = ∞.

Remark The lemma implies that there exists ŝ0 ∈ (γ, 1] such that that
s1 = fE(s̃1) > scrit, where s̃1 = 1− (1− ŝ0)e

−µtG(ŝ0).
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Asymptotic regime (ii) – limiting processS

S̄(n) ⇒ S as n → ∞, where S increases deterministically according to

S′(t) = µ(1− S(t))

between down jumps.

If c ≤ ccrit and s0 ∈ [0, 1) then after the first down jump S becomes
endemic and “follows" the iterative map, so the only randomness in S

is determined by the time of the first down jump.

If c > ccrit then S has J fade outs before it becomes endemic and
“follows" the iterative map, where J has a (possibly modified)
geometric distribution, with support 0, 1, . . . if s0 < ŝcrit and support
1, 2, . . . if s0 ≥ ŝcrit, where ŝcrit > γ. (If s0 = ŝcrit and a successful
invasion occurs at time t = 0 then S(t) = scrit after the first down
jump.)
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Asymptotic regime (ii) – limiting processI∗

{

1
logn

(

log I(n)(t)
)

+
: t ≥ 0

}

⇒ I∗ = {I∗(t) : t ≥ 0} as n → ∞, where

I∗ can be constructed from S.

For example, in the endemic phase, suppose that a down jump occurs
at time tG, S(tG) = s1 ∈ (scrit, γ) and the next down jump occurs at
time tG + t̂, then

I∗(tG + t) = 1 + c

[

(1− γ)t−
(1− s1)

µ

(

1− e−µt
)

]

(0 ≤ t ≤ t̂).
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Asymptotic regime (iii)

Assume that cn/g(n) → c′′ ∈ (0,∞) as n → ∞, for some function g(n)

satisfying g(n) → ∞ and g(n)/ log n → 0 as n → ∞.

Let t(n)1 = inf{t ≥ 0 : I(n)(t) ≥ n/g(n)2}. Then

t
(n)
1

p
−→ ∞ and S̄(n)(t

(n)
1 )

p
−→ 1 as n → ∞.

limn→∞P(fade out after first large outbreak) = 0, so
{

S̄(n)(t
(n)
1 + t) : t ≥ 0

}

⇒ S as n → ∞,

where S is determined by the iterative map with s̃1 = 1.

S is purely deterministic.
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