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Reported case of measles, 1945-70. Source: W.H.O. bulletins. Taken
from CIiff and Haggett (1980).
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Population model

-

® Process indexed by a target population size n.

® Let N (¢) be the population size at time ¢t. Then {N(™)(¢) : ¢t > 0} is
modelled as a Markov immigration-death process with constant
Immigration rate nu and individual death rate /.

® In the absence of infection, if ="' N(")(0) — sy as n — oo then
(NU(t):t >0} = {n "N (t) : ¢t > 0} converges almost surely to
the deterministic model

ds

7 = k—us, s(0) = so,

having solution
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Epidemic model

Homogeneously mixing population. T
SIR (susceptible — infective — recovered)

Fraction x,, of all births (i.e. immigrants) are infectives, with the
remaining births being susceptibles.

While infectious, each infective infects any given susceptible at rate
n~'\,, independently between each distinct pair of individuals.

Each infective recovers and becomes permanently immune at rate ~,,.

Let S()(¢), 1™ (t) and R™ (t) denote respectively the number of
susceptibles, infectives and recovered at time ¢t. Assume that
I (0) = 0 and S™(0) — sy as n — oco. (The initial number of
recovered R (0) has no effect on the ensuing epidemic.)

|
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Effect of rate of disease dynamics
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Simulation of epidemic model
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Simulation of epidemic model with population size
n = 100,000, u = 7—15 v, = 50 (so the mean infectious period is
about 1 week), \,, = 2v,,. Importation rate of infectives is one

L per year J
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Asymptotic regimes
fWe assume that the target population size n — oo such thatT

(a) x,n — K, SO the total importation rate of infectives
unky, — k> 0;

(b) A\, = ¢, and v, = ¢,~, where v € (0, 1).

Asymptotic regimes As n — oo:
() ¢,/ logn — oo,

(i) ¢,/logn — c € (0, 00),

(i) ¢, — oo slower than log n,

(iv) ¢, — ¢ € (0,00).
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SIR epidemic without demography
- -

Suppose that 1 = 0. Then { (S (¢), 1" (¢)) : t > 0} has transition rates:

Transition Type Rate

(s,1) — (s — 1,7+ 1) | infection of susceptible | n=!\,, si

(s,i) — (5,7 — 1) recovery of infective Yl

® Suppose that /(") (0) = 1 and n — oo such that )\, — 1,
Y — v € (0,1) and S™(0) — s € (0,1).

® Then {I™(t):t >0} converges almost surely to a
time-homogeneous linear birth-and-death process, Z say, with birth
rate sg, death rate v and one initial individual.

®  is supercritical <= sg > 7.

o |
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SIR epidemic without demography

Let D) = inf{t : I'")(¢t) = 0} be the duration of the epidemic, so the final number
of susceptibles is S (D)), and let D) = inf{t : I (¢) > logn}. Then

0 If s <7,

lim P (ﬁ(n) < oo) —
1—% If s > .

n—oo

If D) < oo then, as n — oo,

O [(5()(1),1(M)(t)) : t > 0} converges to a random time translate of the deterministic
model
ds , di , :
— = —s1, — = 81 — Yi;
dt dt K
® S (D)) By 50(1 — 7 (s0)), where for s > ~, 7 (s) is the unique strictly positive

solution of the equation

18’7’

l—T=e 77
B there exists d € (0, co0) such that D(™) /logn = d.

(Barbour (1975), von Bahr and Martin-Lof (1980), Barbour and Reinert (2013))
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Asymptotic regime (i): ¢,/ logn — oo

® letS=1{59(t):t >0} beaMarkovian regenerative process, with
renewals occurring whenever S(t) = ~. Between each renewal, S(t)
Increases deterministically according to

S'(t) = (1 = 5()),

except for one down jump (from above ~ to below ~), corresponding to
a major outbreak.

® Under asymptotic regime (i), S = S as n — oo, where = denotes
convergence in the Skorohod M (or M5) topology.

® Note that S™) does NOT converge to S in the usual Skorohod .J;
topology as the sample paths of S are almost surely discontinuous but
the sample paths of S(") contain only jumps of size n~!, so are

“close" to being continuous for large n.
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Asymptotic regime (i) — limiting process.S
f’ If a renewal occurs at time 0 and 7" is the time of the down jump then T
SH)=1—(1—7)e ™ (0<t<T).

® An infective immigrating at time ¢ since the last renewal has probability
— % of triggering a major outbreak, so, for ¢ > 0,

P(T<t)=1—exp [—M/Ot (1 - %) du] — ] — e hnt (em _71 +7>m.

® After the down jump, S(7) = S(T—)(1 — 74(S(T'—))).

® Properties of S such as the inter-arrival time distribution, the
distribution of the down-jump size and the stationary distribution of
S(t) are available.

o |
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Asymptotic regime (Ii) — invasion

f’ Recall \,, = ¢, 7 = ¢y, Where v € (0, 1), and lim,, . ¢,/ logn = c.—‘

® Suppose that 70 (0) = 1, lim,, .o, S (0) = 3¢ € (0,1] and there is no
Immigration of infectives.

® While 1" (t) < n/(logn)?, {I"(t): t > 0} can be approximated by a
time-inhomogeneous linear birth-and-death process {2 : ¢ > 0},
with birth rate A(")(¢) = ¢, [1 — (1 — 50)e*!] and death rate

p(t) = yen + .

& Lett!™ =inf{t >0: ZM () > n/(logn)?}. Then, as n — o,

P(t{"™ < 00) — max (1 - Sl 0) and Y <00 Bt
0

where i =t (e, v, 1, 50) is the unique solution in (0, co) of

o c [(1 _ - U _fO) (1- e_“’t)] =1. o
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Asymptotic regime (i) — body of epidemics
- -

» Suppose that /(" (0) = [n/(logn)*| and

S (0) 255 =1—(1—8)e < asn — .
» Letu!" = inf {t >0 10(t) < oy and S(1) < v}-

#® Then, since ¢,, — oo as n — oo, the main body of an
epidemic IS Instantaneous In the limit as n — oo, SO

(1) n HOaSn%oo and
1

(i) S (u; )) 51 =51(1 —7,(51)) @as n — oo.

o |
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Asymptotic regime (i) — fade out

f.. Suppose that 1" (0) = [n/(logn)?| and S (0) — s; < v as T

n — OoQ.

® Then {I")(t):¢ >0} can be approximated by the birth-and-death
process {Z(™(t) : t > 0} with birth rate A7) (¢) = ¢,, [1 — (1 — s1)e /]
and death rate (™ (t) = ve, + p.

® Asn — oo, {Z"(t):t >0} is critical at time t =1 = (1_31).
® Using Kendall (1948),

E [Z(”)(E)] = |n/(logn)?] exp {cn {(1 _ i L= s) (1 - e—“f)] - ui}

— _n/(logn)Q_nlsgn L e —nt,

® lim, o E[ZW(H)] =0 < c|(1-7)f- L2 (1-erf)| < -1,
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Asymptotic regime (i) — fade out

- N

® Letseii = Seric(V, p,¢) =7 — (1 —~)h™ ! <C(1““_,y)>, where
h(x) =2 —log(l +x) (x > 0). Then,

1 if sy < Sepit,
lim P(fade out) = _ : '
=00 0 If S1 > Scrit-

® For fixed (v, 1),
® 5.4 IS monotonically increasing in ¢;

® sS.it Tyasc—ooand sy L —ooasc | 0.

® There exists cqit = Cerit (7, 1) such that if ¢ < ¢, then

lim P(fade out) =0 forall 55 € (0, 1].

n—oo

o |
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Asymptotic regime (ii) — endemicity

& Suppose s; > sui and £y > 0 solves E [ZW (té”))} = [n/(logn)?].
Then

In/(logn)?| exp {cn [(1 — B — (1_—;1) (1 - euté”’))} _ Nzgm} = [n/(logn)?],

S0, té”) — 15 as n — oo, where £, is the unigue solution in (0, co) of

1-mt- Y _;1) (1—e™) =0

& Leti)” =inf {t >0: IM™(t) > oty and S (1) > } Then, as

n — 00,

g i, and SOEM) 2y 5 =1 — (1 — sp)e M2,

® Note that 7, and 3, are independent of c.

Epidemics in populations with demography and importation of infectives — p.17



Asymptotic regime (ii) — endemicity

-

® For s, e (v, 1], let fe(51) = 5:1(1 —7,(51)) and for s; € (Serit, 7), let
fr(s1) =1 — (1 —s1)e Htz,

® Suppose that 5, € (v, 1] satisfies s; = fp(51) > Sepit. Then, asn — oo
the epidemic process is encapsulated by the iterative map given by

Sp = fR(Sk—l) and S = fE(gk) (,ZC =2,3,... )
® Fork=2,3,... lett, bethe unique solution in (0, c0) of

(1—~)t— c _:‘“‘1) (1—e ) =0.

t1, is the time elapsing between the (k — 1)th and kth down jump in the
limiting process S.

o |
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Asymptotic regime (i) — endemicity
fLemma T
(@) For s e (v,1], we have fr(5) <yand vy — fg(s5) < §— 7.
(b) Fors € (seit, ), we have fr(s) >~ and fr(s) —v <~y — s.
Theorem Suppose that 5, € (v, 1] satisfies s; = fz(51) > Scrit. Then
(@) fork=1,2...,5; > 511 >~vand sy < spiq1 <7,
(b) limp oo 5 = limp o0 53 = 7;
() to>t3>--->0and> ~, 1t = oo.

Remark The lemma implies that there exists 5, € (v, 1] such that that
s1= fu(81) > Serit, Where §; = 1 — (1 — 5g)e Hta(50),

o |
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Asymptotic regime (ii) — limiting process S
- .

® 5" = Sasn — co, where S increases deterministically according to

S'(t) = u(1 = S(1))
between down jumps.

® If c <cuip and sg € [0, 1) then after the first down jump S becomes
endemic and “follows" the iterative map, so the only randomness in S
IS determined by the time of the first down jump.

® Ifc > c.it then S has J fade outs before it becomes endemic and
“follows" the iterative map, where J has a (possibly modified)
geometric distribution, with support 0, 1, ... if sop < S..4+ and support
1,2,... if sg > S04, Where 5.0 > . (If sg = .4t @and a successful
Invasion occurs at time ¢ = 0 then S(¢) = s, after the first down

L jump.) J
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Asymptotic regime (i) — limiting process/*

- N

o {loén (log IU(t)), =t > 0} = [* = {I*(t):t >0} as n — oo, where

[* can be constructed from S.

® For example, in the endemic phase, suppose that a down jJump occurs
attime i, S(tg) = s1 € (Serit, 7) @and the next down jump occurs at

time ¢t + ¢, then

[*(tg+t):1+c[(1—fy)t—(1_81> (1—e™) (0 <t <.
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Asymptotic regime (iii)

-

Assume that ¢,,/g(n) — ¢ € (0,0) as n — oo, for some function g(n)
satisfying g(n) — co and g(n)/logn — 0 as n — oc.

Let t\) = inf{t > 0: I () > n/g(n)?}. Then
"o and Sy 251 asn— oo
lim,, , .. P(fade out after first large outbreak) = 0, so
{g(”)(tgn)+t):t20}:>5 as n — oo,

where S is determined by the iterative map with 5, = 1.

S'is purely deterministic.

|
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