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1. Galton-Watson branching processes

Let {£,,:} be a family of positive integer-valued i.i.d. random variables. Given X,
we can define a Galton-Watson branching process by

Xn—l
Xn - Z €n,i, n 2 1.
i=1

Problem A continuous-time/state model would be more realistic. However, the
above formulation CANNOT be generalized directly to that setting.
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2. Stochastic equations for CB-processes

Recall that a Galton-Watson branching process (GW-process) is defined by

Xp—1
Xp= ), &i» k21 (1)
Suppose that p := E(&1,1) < oco. Then (1 — p = b)
Xp—1

Xk = Xpg—1— (1 — p)Xp—1 + Z (&kyi — 1),

" Xen
X, = Xo—Zka 1+ ) D (Eri—

k=1 i=1

® A typical continuous-time/state branching process (CB-process) is defined by

z(t) = x(0) — /Ot br(s—)ds + /Ot ./:(8—) /000 ¢N(ds, du, dt), (2)

where N (ds, du, d¢) = compensated Poisson random measure on (0, co)3; Bertoin/Le
Gall ('06), Dawson/L ('06).

(1) for GW-process —> (2) for CB-process



Suppose that & > 0 and b are constants, and (z A z2)m(dz) is a finite measure
on (0, c0). Let

e W(ds, du) = Gaussian white noise on (0, co)? with intensity dsdu;

e N(ds,dz,du) = compensated Poisson random measure (0, c0)3 with in-
tensity dsm(dz)du.

Theorem 1 (Dawson/L '06; L/Ma ’08) There is a pathwise unique positive (strong)
solution to [simple generalization of (2)]:
't rx(s)

z(t) = x(0) — b/t xz(s)ds + o-/ W (ds, du)

0 .

0 0
t roo prx(s—)
—|—// / zN(ds, dz, du). 3)
o Jo Jo

® The solution {x(t)} to (3) is a general CB-process.



Example A Feller branching diffusion, the simplest CB-process, is defined by

ot
x(t) = x(0) —|—/ Vx(s)dB(s), )
0
where B(s) is a Brownian motion.
A Feller branching flow { X¢(v) : ¢ > 0, v > 0} can be defined by [special form of
(3)]
t rXs(v)
Xi(v) =wv —|—/ / W (ds, du). 5)
o Jo

The mapping v — X (v) is non-decreasing.

® For w > v > 0, the process { X;(w) — X¢(v) : t > 0} is a Feller branching
diffusion independent of { X¢(v) : t > 0}.

® Let Y;(dv) be the random measure on R such that Yz ([0, v]) = X¢(v). Then
{Y: : t > 0} is a special Dawson-Watanabe superprocess; Dawson/L ('12).



3. Laplace transforms of the CB-process
The branching mechanism of {x(¢)} is a function ¢ on [0, co) defined by
1 oo
¢(z) = bz + 50'2z2 + / (e™*" — 1 + zu)m(du). (6)
0
The transition probabilities of {«(t)} are characterized by (A, z > 0)

E.[exp{—Az(t)}] = exp{—2v(t,\)}, )

where t — v(t, A) is the unique solution of
7]
av(t, A) = —d(v(t,N), v(0,A) = A (8)
Moreover, we have
t
Em[exp{ — 0/ :c(s)dsH = exp{—=zu(t,0)}, )
0
where t — u(t, 0) is the unique solution of

o
au(t, 0) =X — ¢(u(t, 0)), u(0,0) =0. (10)



4. Local and global maximal jumps

Example A special CB-process with jumps is defined by:

t ry(s) t roo ry(s—)
y(t) == +/ / W (ds, du) +/ / / 2N (ds,dz, du).
0 JO 0o Jo 0

We may also consider the Feller branching diffusion {«(t)} defined by:

t rx(s)
x(t) =« —+—/ / W(ds, du).
0o Jo
By the independence of {x(t)} and { N (ds, dz, du)}, we have

P.(s — y(s) has no jumps on (0, t])

(11)

(12)

t oo ry(s—)
=Py (/ / / zN(ds,dz,du) = 0,x(s) = y(s) for0 < s < t)
oJo Jo

:Pm(/ot/ooo/ow(s_)N(ds,dz,du):0)

=P, [exp { — m(0, co) /Ot w(s)ds}] (explicitly computable).

(13)



Let Az(s) = xz(s) — x(s—) and 7. = inf{s > 0: Ax(s) > r}.
Theorem 2 (He/L ’15) For any r» > 0 we have (local maximal jump)

Pw{orgggt Ax(s) <7} =Pa{r. > t} = exp{—zur(t)}, (14)

where t — wu,.(t) is the unique solution of

o
aur(t) = m(ra OO) - (pbr(ur(t))? ’U,,,.(O) =0, (15)

where

or(z) = [b + /1‘00 um(du)}z +c2? + /Or(e_zu — 14 zu)m(du). (16)

Theorem 3 (He/L ’15) Suppose that ¢(z) — oo as z — oo. Then for any r > 0
with m(r, co) > 0 we have (global maximal jump)

Pm{sup Ax(s) < 7'} = P {7 = oo} = exp{—z¢; ' (m(r,0))}. (17)
s>0

These also gave distributional properties of the Lévy tree.



5. Tree-valued Markov processes
The study was initiated by Aldous/Pitman (’98).
From ¢ we can define a family of branching mechanisms (for some 8¢ > 0):
$q(A) = ¢(A —q) — #(—q), g €T :=[0,6¢]or [0, 6). (18)
® Abraham/Delmas ('12): increasing tree-valued process {7 (q) : q € T}.
AN AN
t % t
o &
&t
:m):

® The tree-valued process and TWO path-valued processes:

{7(@):q €T} +— {(Xt(q))t>0:q € T} or {X¢(q)gqer : t > 0}. (19



6. Solution flow of a stochastic equation

The family {¢q : ¢ € T}, T = [0, 6] or [0, 8p), can be expressed as:
1 oo
Dg(N) = by + 50'2)\2 + / (e7** — 1 4 2A)my,(dz2), (20)
0
where g — mg(dz) is increasing and defines a measure m(dq, dz) on T' x (0, co). Let

e W (ds, du) = Gaussian white noise based on dsdu;

e No(ds,dy,dz,du) = compensated Poisson r.m. with intensity dsm(dy, dz)du.

Theorem 4 (L ’14) There is a pathwise unique positive strong solution flow to:
Xs(q)
Xi(q) = Xo—b / X (q)ds+a/ / W (ds, du)

88— ( )
_|_/ / / / ! zNy(ds, dy, dz, du). (21)
[0,q]

® This gives a construction of the path-valued processes {(X:(q)):>0 : ¢ € T} and
{Xe(@)ger : t > 0}.



7. Structures of the two path-valued processes

® The path-valued processes {(X¢(q))t>0 : ¢ € T} and {X¢(q)qer : t > 0}
are easier to handle than the tree-valued process {7 (q) : q € T'}.

Theorem 5 (L '14) The path-valued process {(X¢(q)):>0 : @ € T} with state
space D10, 00) is a branching Markov process with inhomogeneous transition
semigroup (Pp.q : ¢ > p € T') given by

[ e s, () = exp { ~ [ upg(s, H(e)ds} @)
D+0,00) 0

for f € C*[0, c0) with compact support, where

up,q(8, f) = F(8) + dp(uq(s, f)) — dq(uq(s; f)) (23)

and s — uq(s) := uq(s, f) is the unique compactly supported bounded positive
solution to

w)+ [ puwi@pat= [ fwan sz (4)



The increasing path ¢ — X¢(q) in {X¢(q)qer : t > 0} induces a measure Y; on
T,and {Y; : t > 0} is a process with state space M (T') := {measures on T'}.

® Let f — W (-, f) be the operator on C+(T) defined by

U(x, f) = /T f(xV 0)Bedo + /T do /0°° (1 = e_zf(mVO))ne(dz)_ (25)

Theorem 6 (L '14) The measure-valued process {Y; : t > 0} is a Dawson-
Watanabe superprocess with transition semigroup (Qt)¢>o defined by

/ 6_<”’f>Qt(M, dv) = e_<“’th>, fe ct (T), (26)
M(T)
where t — V. f is the unique locally bounded positive solution of

Vit @) = 1) - [ 60(Vaf(2) — T(a,Vif)lds, t>0,0€T. @)

® Thus {Y; : t > 0} has local branching mechanism ¢ = ¢ and nonlocal
branching mechanism &; Chapter 2 of L ('11).



Summary: A natural way to define a continuous-time/state branching process
{z(t) : t > 0} is to use the stochastic integral equation

t rx(s)

t
z(t) = =(0) —/0 bac(s)ds—l—o-/o W (ds, du)

0
t roo prx(s—) _
+// / zN(ds,dz,du).
o Jo Jo

Some variations of the equation have been used to study:

e Dawson/L (AOP ’12): the flow of subordinators of Bertoin/Le Gall ('03, ‘05, '06);

Xiong (AOP ’13), He/L/Yang (SPA '14): Dawson—Watanabe superprocesses;

e L (AOP ’14): the tree-valued processes of Abraham/Delmas ('12);

L—-Ma (ArXiv ’13): estimation of the parameters of the CB-process;

Pardoux/Wakolbinger (ArXiv *14): the logistic growth model of Lambert ('05);

He—L (ArXiv '14): distribution of the maximal jump of the CB-process.
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