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1. Galton-Watson branching processes

Let {ξn,i} be a family of positive integer-valued i.i.d. random variables. Given X0,
we can define a Galton-Watson branching process by

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

Problem A continuous-time/state model would be more realistic. However, the
above formulation CANNOT be generalized directly to that setting.

discrete-time case continuous-time case
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2. Stochastic equations for CB-processes

Recall that a Galton-Watson branching process (GW-process) is defined by

Xk =

Xk−1∑
i=1

ξk,i, k ≥ 1. (1)

Suppose that µ := E(ξ1,1) <∞. Then (1− µ = b)

Xk = Xk−1 − (1− µ)Xk−1 +

Xk−1∑
i=1

(ξk,i − µ),

Xn = X0 −
n∑
k=1

bXk−1 +

n∑
k=1

Xk−1∑
i=1

(ξk,i − µ).

• A typical continuous-time/state branching process (CB-process) is defined by

x(t) = x(0)−
∫ t

0

bx(s−)ds+

∫ t

0

∫ x(s−)

0

∫ ∞
0

ξÑ(ds, du, dξ), (2)

where Ñ(ds, du, dξ) = compensated Poisson random measure on (0,∞)3; Bertoin/Le
Gall (’06), Dawson/L (’06).

(1) for GW-process ←→ (2) for CB-process
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Suppose that σ ≥ 0 and b are constants, and (z ∧ z2)m(dz) is a finite measure
on (0,∞). Let

• W (ds, du) = Gaussian white noise on (0,∞)2 with intensity dsdu;

• Ñ(ds, dz, du) = compensated Poisson random measure (0,∞)3 with in-
tensity dsm(dz)du.

Theorem 1 (Dawson/L ’06; L/Ma ’08) There is a pathwise unique positive (strong)
solution to [simple generalization of (2)]:

x(t) = x(0)− b
∫ t

0
x(s)ds+ σ

∫ t

0

∫ x(s)

0
W (ds, du)

+

∫ t

0

∫ ∞
0

∫ x(s−)

0
zÑ(ds, dz, du). (3)

• The solution {x(t)} to (3) is a general CB-process.
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Example A Feller branching diffusion, the simplest CB-process, is defined by

x(t) = x(0) +

∫ t

0

√
x(s)dB(s), (4)

where B(s) is a Brownian motion.

A Feller branching flow {Xt(v) : t ≥ 0, v ≥ 0} can be defined by [special form of
(3)]

Xt(v) = v +

∫ t

0

∫ Xs(v)

0
W (ds, du). (5)

The mapping v 7→ Xt(v) is non-decreasing.

• For w ≥ v ≥ 0, the process {Xt(w) − Xt(v) : t ≥ 0} is a Feller branching
diffusion independent of {Xt(v) : t ≥ 0}.

• Let Yt(dv) be the random measure on R+ such that Yt([0, v]) = Xt(v). Then
{Yt : t ≥ 0} is a special Dawson-Watanabe superprocess; Dawson/L (’12).
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3. Laplace transforms of the CB-process

The branching mechanism of {x(t)} is a function φ on [0,∞) defined by

φ(z) = bz +
1

2
σ2z2 +

∫ ∞
0

(e−zu − 1 + zu)m(du). (6)

The transition probabilities of {x(t)} are characterized by (λ, x ≥ 0)

Ex
[
exp{−λx(t)}

]
= exp{−xv(t, λ)}, (7)

where t 7→ v(t, λ) is the unique solution of
∂

∂t
v(t, λ) = −φ(v(t, λ)), v(0, λ) = λ. (8)

Moreover, we have

Ex
[

exp
{
− θ

∫ t

0
x(s)ds

}]
= exp{−xu(t, θ)}, (9)

where t 7→ u(t, θ) is the unique solution of
∂

∂t
u(t, θ) = λ− φ(u(t, θ)), u(0, θ) = 0. (10)
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4. Local and global maximal jumps

Example A special CB-process with jumps is defined by:

y(t) = x+

∫ t

0

∫ y(s)

0
W (ds, du) +

∫ t

0

∫ ∞
0

∫ y(s−)

0
zN(ds, dz, du). (11)

We may also consider the Feller branching diffusion {x(t)} defined by:

x(t) = x+

∫ t

0

∫ x(s)

0
W (ds, du). (12)

By the independence of {x(t)} and {N(ds, dz, du)}, we have

Px(s 7→ y(s) has no jumps on (0, t])

= Px
(∫ t

0

∫ ∞
0

∫ y(s−)

0
zN(ds, dz, du) = 0, x(s) = y(s) for 0 ≤ s ≤ t

)
= Px

( ∫ t

0

∫ ∞
0

∫ x(s−)

0
N(ds, dz, du) = 0

)
= Px

[
exp

{
−m(0,∞)

∫ t

0
x(s)ds

}]
(explicitly computable). (13)
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Let ∆x(s) = x(s)− x(s−) and τr = inf{s > 0 : ∆x(s) > r}.

Theorem 2 (He/L ’15) For any r > 0 we have (local maximal jump)

Px
{

max
0<s≤t

∆x(s) ≤ r
}

= Px{τr > t} = exp{−xur(t)}, (14)

where t 7→ ur(t) is the unique solution of

∂

∂t
ur(t) = m(r,∞)− φr(ur(t)), ur(0) = 0, (15)

where

φr(z) =
[
b+

∫ ∞
r

um(du)
]
z + cz2 +

∫ r

0
(e−zu − 1 + zu)m(du). (16)

Theorem 3 (He/L ’15) Suppose that φ(z)→∞ as z →∞. Then for any r ≥ 0

with m(r,∞) > 0 we have (global maximal jump)

Px
{

sup
s>0

∆x(s) ≤ r
}

= Px{τr =∞} = exp{−xφ−1
r (m(r,∞))}. (17)

These also gave distributional properties of the Lévy tree.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Tree-valued Markov processes

The study was initiated by Aldous/Pitman (’98).

From φ we can define a family of branching mechanisms (for some θ0 ≥ 0):

φq(λ) = φ(λ− q)− φ(−q), q ∈ T := [0, θ0] or [0, θ0). (18)

• Abraham/Delmas (’12): increasing tree-valued process {T (q) : q ∈ T}.

• The tree-valued process and TWO path-valued processes:

{T (q) : q ∈ T} ←→ {(Xt(q))t≥0 : q ∈ T} or {Xt(q)q∈T : t ≥ 0}. (19)
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6. Solution flow of a stochastic equation

The family {φq : q ∈ T}, T = [0, θ0] or [0, θ0), can be expressed as:

φq(λ) = bqλ+
1

2
σ2λ2 +

∫ ∞
0

(e−zλ − 1 + zλ)mq(dz), (20)

where q 7→ mq(dz) is increasing and defines a measure m(dq, dz) on T × (0,∞). Let

• W (ds, du) = Gaussian white noise based on dsdu;

• Ñ0(ds, dy, dz, du) = compensated Poisson r.m. with intensity dsm(dy, dz)du.

Theorem 4 (L ’14) There is a pathwise unique positive strong solution flow to:

Xt(q) = X0 − bq
∫ t

0

Xs(q)ds+ σ

∫ t

0

∫ Xs(q)

0

W (ds, du)

+

∫ t

0

∫
[0,q]

∫ ∞
0

∫ Xs−(q)

0

zÑ0(ds, dy, dz, du). (21)

• This gives a construction of the path-valued processes {(Xt(q))t≥0 : q ∈ T} and
{Xt(q)q∈T : t ≥ 0}.
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7. Structures of the two path-valued processes

• The path-valued processes {(Xt(q))t≥0 : q ∈ T} and {Xt(q)q∈T : t ≥ 0}
are easier to handle than the tree-valued process {T (q) : q ∈ T}.

Theorem 5 (L ’14) The path-valued process {(Xt(q))t≥0 : q ∈ T} with state
space D+[0,∞) is a branching Markov process with inhomogeneous transition
semigroup (Pp,q : q ≥ p ∈ T ) given by∫
D+[0,∞)

e−
∫∞
0 f(s)w(s)dsPp,q(η, dw) = exp

{
−
∫ ∞
0

up,q(s, f)η(s)ds
}

(22)

for f ∈ C+[0,∞) with compact support, where

up,q(s, f) = f(s) + φp(uq(s, f))− φq(uq(s, f)) (23)

and s 7→ uq(s) := uq(s, f) is the unique compactly supported bounded positive
solution to

uq(s) +

∫ ∞
s

φq(uq(t))dt =

∫ ∞
s

f(t)dt, s ≥ 0. (24)
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The increasing path q 7→ Xt(q) in {Xt(q)q∈T : t ≥ 0} induces a measure Yt on
T , and {Yt : t ≥ 0} is a process with state space M(T ) := {measures on T}.

• Let f 7→ Ψ(·, f) be the operator on C+(T ) defined by

Ψ(x, f) =

∫
T
f(x ∨ θ)βθdθ +

∫
T
dθ

∫ ∞
0

(
1− e−zf(x∨θ)

)
nθ(dz). (25)

Theorem 6 (L ’14) The measure-valued process {Yt : t ≥ 0} is a Dawson-
Watanabe superprocess with transition semigroup (Qt)t≥0 defined by∫

M(T )
e−〈ν,f〉Qt(µ, dν) = e−〈µ,Vtf〉, f ∈ C+(T ), (26)

where t 7→ Vtf is the unique locally bounded positive solution of

Vtf(x) = f(x)−
∫ t

0
[φ0(Vsf(x))−Ψ(x, Vsf)]ds, t ≥ 0, x ∈ T. (27)

• Thus {Yt : t ≥ 0} has local branching mechanism φ = φ0 and nonlocal
branching mechanism Ψ ; Chapter 2 of L (’11).
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Summary: A natural way to define a continuous-time/state branching process
{x(t) : t ≥ 0} is to use the stochastic integral equation

x(t) = x(0)−
∫ t

0
bx(s)ds+ σ

∫ t

0

∫ x(s)

0
W (ds, du)

+

∫ t

0

∫ ∞
0

∫ x(s−)

0
zÑ(ds, dz, du).

Some variations of the equation have been used to study:

• Dawson/L (AOP ’12): the flow of subordinators of Bertoin/Le Gall (’03, ’05, ’06);

• Xiong (AOP ’13), He/L/Yang (SPA ’14): Dawson–Watanabe superprocesses;

• L (AOP ’14): the tree-valued processes of Abraham/Delmas (’12);

• L–Ma (ArXiv ’13): estimation of the parameters of the CB-process;

• Pardoux/Wakolbinger (ArXiv ’14): the logistic growth model of Lambert (’05);

• He–L (ArXiv ’14): distribution of the maximal jump of the CB-process.
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