Randomly biased random walks on trees

Yueyun Hu (Université Paris 13) Badajoz, April 7–10, 2015

Overview

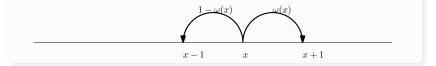
- \bullet Random walks in random environments on $\mathbb Z$
- Randomly biased walks on trees
- 2 The recurrent case
- 3 Main result
 - Convergence in law for X_n
- Proof
 - Localization of the biased walk
 - Approximation by invariant measure

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Model of 1-d RWRE (S_n)

Let $\omega = \{\omega_x, x \in \mathbb{Z}\}$ be a family of i.i.d. random variables (and no constant) taking values in (0, 1).

Given ω , $\{S_n, n \ge 0\}$ is a Markov chain on \mathbb{Z} with probability transition :

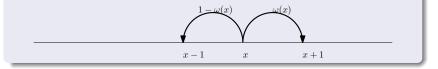


Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Model of 1-d RWRE (S_n)

Let $\omega = \{\omega_x, x \in \mathbb{Z}\}$ be a family of i.i.d. random variables (and no constant) taking values in (0, 1).

Given ω , $\{S_n, n \ge 0\}$ is a Markov chain on \mathbb{Z} with probability transition :



Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Asymptotic behaviors of (S_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni : Lecture notes Saint Flour 2001.

Recurrence/transience criteria : Solomon (1975)

- (S_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) = 0$;
- $S_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Asymptotic behaviors of (S_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni : Lecture notes Saint Flour 2001.

Recurrence/transience criteria : Solomon (1975)

- (S_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) = 0$;
- $S_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

How big is (S_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $\frac{S_n}{n^{\varrho}}$ converges in law, with $\varrho \in (0, 1]$.

Recurrent case : Sinai (1982)'s localization

when (S_n) is recurrent, $\frac{S_n}{(\log n)^2}$ converges in law.

Question : What happens on trees?

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

How big is (S_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $\frac{S_n}{n^{\varrho}}$ converges in law, with $\varrho \in (0, 1]$.

Recurrent case : Sinai (1982)'s localization

when (S_n) is recurrent, $\frac{S_n}{(\log n)^2}$ converges in law.

Question : What happens on trees ?

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

How big is (S_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $\frac{S_n}{n^{\varrho}}$ converges in law, with $\varrho \in (0, 1]$.

Recurrent case : Sinai (1982)'s localization

when (S_n) is recurrent, $\frac{S_n}{(\log n)^2}$ converges in law.

Question : What happens on trees?

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

RWRE on trees : Lyons and Pemantle (1992)

Random environments

Let \mathbb{T} be a regular tree (or more generally a supercritical Galton-Watson tree), rooted at \emptyset . Let $\omega = \{(\omega(x, y), y \in \mathbb{T})_{x \in \mathbb{T}}\}$ be a family of random variables such that $\sum_{y \in \mathbb{T}: y \sim x} \omega(x, y) = 1$, $\omega(x, y) > 0$ iff $x \sim y$ ($x \sim y$ means x and y are adjacent).

Random walk in random environment (X_n) on a tree :

Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with

$$\mathbb{P}_{\omega}(X_{n+1} = y | X_n = x) = \omega(x, y), \quad \forall x, y \in \mathbb{T}.$$

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

RWRE on trees : Lyons and Pemantle (1992)

Random environments

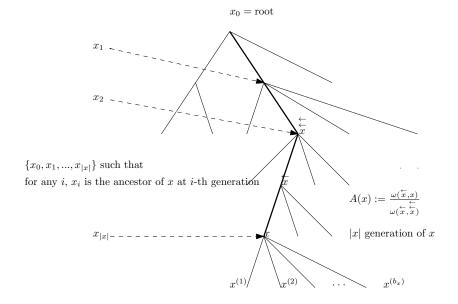
Let \mathbb{T} be a regular tree (or more generally a supercritical Galton-Watson tree), rooted at \emptyset . Let $\omega = \{(\omega(x, y), y \in \mathbb{T})_{x \in \mathbb{T}}\}$ be a family of random variables such that $\sum_{y \in \mathbb{T}: y \sim x} \omega(x, y) = 1$, $\omega(x, y) > 0$ iff $x \sim y$ ($x \sim y$ means x and y are adjacent).

Random walk in random environment (X_n) on a tree :

Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with

$$\mathbb{P}_{\omega}\Big(X_{n+1}=y\,|X_n=x\Big)=\omega(x,y),\qquad \forall x,\,y\in\mathbb{T}.$$

Notations in a Galton-Watson tree \mathbb{T} , rooted at \varnothing



Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Notations

Instead of looking at $\omega(x, \cdot)$, it is more convenient to use the notation $A(x) := \omega(\overleftarrow{x}, x) / \omega(\overleftarrow{x}, \overleftarrow{x})$ [referred as the biase].

When all $A(x) = \lambda$ some positive constant, the walk is called λ -biased walk on a Galton-Watson tree [Lyons, Pemantle and Peres (1995, 1996)].

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Notations

Instead of looking at $\omega(x, \cdot)$, it is more convenient to use the notation $A(x) := \omega(\overleftarrow{x}, x)/\omega(\overleftarrow{x}, \overleftarrow{x})$ [referred as the biase].

When all $A(x) = \lambda$ some positive constant, the walk is called λ -biased walk on a Galton-Watson tree [Lyons, Pemantle and Peres (1995, 1996)].

Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Recurrence/transience criteria

Hypothesis :

We assume that for all $|x| \ge 2$, $\{A(x^{(1)}), ..., A(x^{(b_x)})\}$ are i.i.d. and distributed as the vector $\{A_1, ..., A_b\}$, where b_x denotes the number of children of x. Define

$$\psi(t) := \log \mathbb{E}\Big(\sum_{i=1}^{\mathbf{b}} A_i^t\Big), \qquad \forall t \in \mathbb{R}.$$

Introduction

The recurrent case Main result Proof Random walks in random environments on $\ensuremath{\mathbb{Z}}$ Randomly biased walks on trees

Lyons and Pemantle (1992)'s theorem :

- if $\inf_{0 \le t \le 1} \psi(t) > 0$, then RWRE (X_n) is a.s. transient.
- 2 If $\inf_{0 \le t \le 1} \psi(t) = 0$, then RWRE (X_n) is a.s. recurrent.
- 3 If $\inf_{0 \le t \le 1} \psi(t) < 0$, then (X_n) is a.s. positive recurrent.

Subdiffusive case

Theorem (H. and Shi 2007)

If $\inf_{0 \le t \le 1} \psi(t) = 0$ and $\psi'(1) < 0$, then almost surely,

$$\max_{0\leq i\leq n}|X_i|=n^{\nu+o(1)},$$

where

$$u:=1-\max(rac{1}{2},rac{1}{\kappa})\in(0,rac{1}{2}],$$

and

$$\kappa:=\inf\{t>1:\psi(t)=\mathsf{0}\}\in(1,\infty].$$

Slow movement case

Theorem (Faraud, H. and Shi 2012)

If $\psi(1) = \psi'(1) = 0$, then almost surely,

$$\lim_{n \to \infty} \frac{1}{(\log n)^3} \max_{0 \le i \le n} |X_i| = \frac{8}{3\pi^2 \psi''(1)}.$$

Remark (G. Faraud)

If $\inf_{0 \le t \le 1} \psi(t) = 0$ and $\psi'(1) > 0$, then (X_n) is positive recurrent.

Slow movement case

Theorem (Faraud, H. and Shi 2012)

If $\psi(1) = \psi'(1) = 0$, then almost surely,

$$\lim_{n\to\infty}\frac{1}{(\log n)^3}\max_{0\leq i\leq n}|X_i|=\frac{8}{3\pi^2\psi''(1)}.$$

Remark (G. Faraud)

If $\inf_{0 \le t \le 1} \psi(t) = 0$ and $\psi'(1) > 0$, then (X_n) is positive recurrent.

References

• Aïdékon (2008) for rate of convergence in the transient case.

- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- If A(x) ≡ λ [informally κ = ∞], see Peres and Zeitouni (2008) for a CLT in the recurrent case, and Aïdékon (2013) for a formula on the speed in the transient case.
- (sub)diffusive case (κ > 2) : Faraud (2013) proved CLT for κ > 5; E. Aïdékon and Loïc de Raphélis (convergence to Brownian tree) for κ > 2.
- Andreoletti and Debs (2011, 2013) for the local times and the spread.

- Aïdékon (2008) for rate of convergence in the transient case.
- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- If A(x) ≡ λ [informally κ = ∞], see Peres and Zeitouni (2008) for a CLT in the recurrent case, and Aïdékon (2013) for a formula on the speed in the transient case.
- (sub)diffusive case (κ > 2) : Faraud (2013) proved CLT for κ > 5; E. Aïdékon and Loïc de Raphélis (convergence to Brownian tree) for κ > 2.
- Andreoletti and Debs (2011, 2013) for the local times and the spread.

- Aïdékon (2008) for rate of convergence in the transient case.
- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- If A(x) ≡ λ [informally κ = ∞], see Peres and Zeitouni (2008) for a CLT in the recurrent case, and Aïdékon (2013) for a formula on the speed in the transient case.
- (sub)diffusive case ($\kappa > 2$) : Faraud (2013) proved CLT for $\kappa > 5$; E. Aïdékon and Loïc de Raphélis (convergence to Brownian tree) for $\kappa > 2$.
- Andreoletti and Debs (2011, 2013) for the local times and the spread.

- Aïdékon (2008) for rate of convergence in the transient case.
- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- If A(x) ≡ λ [informally κ = ∞], see Peres and Zeitouni (2008) for a CLT in the recurrent case, and Aïdékon (2013) for a formula on the speed in the transient case.
- (sub)diffusive case ($\kappa > 2$) : Faraud (2013) proved CLT for $\kappa > 5$; E. Aïdékon and Loïc de Raphélis (convergence to Brownian tree) for $\kappa > 2$.
- Andreoletti and Debs (2011, 2013) for the local times and the spread.

- Aïdékon (2008) for rate of convergence in the transient case.
- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- If A(x) ≡ λ [informally κ = ∞], see Peres and Zeitouni (2008) for a CLT in the recurrent case, and Aïdékon (2013) for a formula on the speed in the transient case.
- (sub)diffusive case ($\kappa > 2$) : Faraud (2013) proved CLT for $\kappa > 5$; E. Aïdékon and Loïc de Raphélis (convergence to Brownian tree) for $\kappa > 2$.
- Andreoletti and Debs (2011, 2013) for the local times and the spread.

Convergence in law for X_n

Critical case : $\psi(1) = \psi'(1) = 0$

When $\psi(1) = \psi'(1) = 0$, the associated potential process V is a branching random walk in the "boundary case", where

$$V(x) := -\sum_{y \in]\!]arnothing, x]\!] \log A(y), \qquad orall x \in \mathbb{T}.$$

Question

Recall that $\max_{0 \le k \le n} |X_k| \sim c(\log n)^3$ a.s. What is the renormalization for $|X_n|$?

Convergence in law for X_n

Critical case : $\psi(1) = \psi'(1) = 0$

When $\psi(1) = \psi'(1) = 0$, the associated potential process V is a branching random walk in the "boundary case", where

$$V(x) := -\sum_{y \in]\!]arnothing, x]\!] \log A(y), \qquad orall x \in \mathbb{T}.$$

Question

Recall that $\max_{0 \le k \le n} |X_k| \sim c(\log n)^3$ a.s. What is the renormalization for $|X_n|$?

Introduction The recurrent case Main result Proof Main result

Theorem (H. and Shi'15+)

Under $\mathbb{P}(\ \cdot \ |\mathbb{T}=\infty)$,

$$\frac{\sigma^2 |X_n|}{(\log n)^2} \xrightarrow{(d)} \mathbb{X}_{\infty},$$

with $\mathbb{P}(\mathbb{X}_{\infty} \in db)/db = \sqrt{\frac{1}{2\pi \, b}} \, \mathbb{P}(\eta \leq \frac{1}{\sqrt{b}})$, and $\sigma^2 = \psi''(1)$.

Introduction The recurrent case Convergence in law for X_n Main result Proof Definition of η η is the maximal drawdown of the Brownian meander ${\tt m}$ $\mathtt{m}(s)$ η $_s$

Convergence in law for X_n

Maximal drawdown

Proposition

$$\int_0^\infty \sqrt{\frac{1}{2\pi \, b}} \, \mathbb{P}\big(\eta \leq \frac{1}{\sqrt{b}}\big) db = 1.$$

Proof of Proposition by Marc Yor (2013)

This is equivalent to show that $\mathbb{E}\left[\frac{1}{\bar{\eta}}\right] = \sqrt{\frac{\pi}{2}}$, which can be done by using the stochastic calculus...

Convergence in law for X_n

Maximal drawdown

Proposition

$$\int_0^\infty \sqrt{\frac{1}{2\pi \, b}} \, \mathbb{P}\big(\eta \leq \frac{1}{\sqrt{b}}\big) db = 1.$$

Proof of Proposition by Marc Yor (2013)

This is equivalent to show that $\mathbb{E}\left[\frac{1}{\eta}\right] = \sqrt{\frac{\pi}{2}}$, which can be done by using the stochastic calculus...

Convergence in law for X_n

Finitely-dimensional convergence

Remark

For any $\kappa \geq 1$ and $0 < t_1 < t_2 < ... < t_{\kappa} \leq 1$,

$$(\frac{|X_{[t_i n]}|}{(\log n)^2}, 1 \le i \le \kappa)$$

are asymptotically independent and converge to the same limiting law.

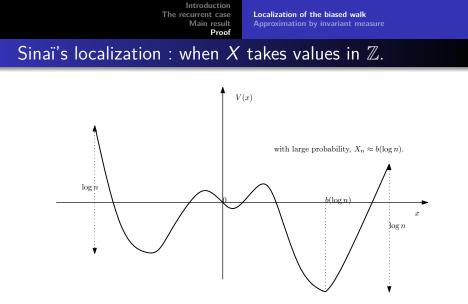
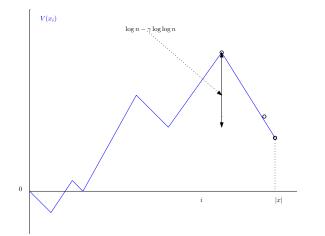


FIGURE: Sinai's valley, where V denotes the potential process of X.

Picture of the reflecting barrier $\mathscr{L}^{(\gamma)}_n$

$$x \in \mathscr{L}_n^{(\gamma)}$$
 is roughly equivalent to $V^{\#}(x) > \log n - \gamma \log \log n$

but none of the ancestors of x does, where $V^{\#}(x) := \max_{\emptyset < z \le y \le x} (V(z) - V(y)).$



Reflecting barriers

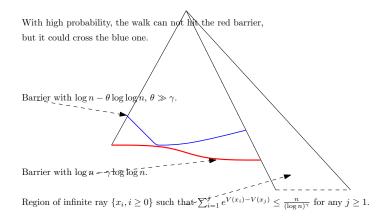


FIGURE: Two reflecting barriers $\mathscr{L}_n^{(\gamma)}$ and $\mathscr{L}_n^{(\theta)}$, $\gamma < 2$ and θ large

Localization of the biased walk Approximation by invariant measure

Invariant probability measure

 Let π_n(·) be the invariant probability measure of the biased walk reflected at ℒ^(γ)_n:

$$\pi_n(x) \approx \frac{1}{Z_n} \mathrm{e}^{-V(x)}, \qquad x \leq \mathscr{L}_n^{(\gamma)}.$$

• Main step : Show that (modulo the parity of *n*)

the law of $X_n \approx \pi_n(\cdot)$.

Localization of the biased walk Approximation by invariant measure

Invariant probability measure

 Let π_n(·) be the invariant probability measure of the biased walk reflected at ℒ^(γ)_n:

$$\pi_n(x) \approx \frac{1}{Z_n} \mathrm{e}^{-V(x)}, \qquad x \leq \mathscr{L}_n^{(\gamma)}.$$

• Main step : Show that (modulo the parity of *n*)

the law of $X_n \approx \pi_n(\cdot)$.

Localization of the biased walk Approximation by invariant measure

Proof of Theorem : by assuming the approximation of invariant measure

$$\begin{split} P_{\omega}(a \leq \frac{|X_n|}{(\log n)^2} \leq b) &\approx \sum_{\substack{a(\log n)^2 \leq |x| \leq b(\log n)^2}} \pi_n(x) \\ &\approx \frac{1}{Z_n} \sum_{\substack{a(\log n)^2 \leq |x| \leq b(\log n)^2}} \mathbf{1}_{(x < \mathcal{L}_n^{(\gamma)})} \mathrm{e}^{-V(x)}, \\ &\text{with } Z_n = \sum_{x \leq \mathcal{L}_n^{(\gamma)}} \mathrm{e}^{-V(x)}. \end{split}$$

Localization of the biased walk Approximation by invariant measure

Proof of Theorem : continuation

A functional limit theorem by Th. Madaule (2013+)

Choose |x| = n according to the probability propositional to $e^{-V(x)}$. The linear interpolation of $(n^{-1/2}V(x_{[tn]}), 0 \le t \le 1)$ converges in law to $(\sigma m_t, 0 \le t \le 1)$ with m. the Brownian meander.

Proof of Theorem

Study the behaviors of Z_n etc...

Localization of the biased walk Approximation by invariant measure

Proof of Theorem : continuation

A functional limit theorem by Th. Madaule (2013+)

Choose |x| = n according to the probability propositional to $e^{-V(x)}$. The linear interpolation of $(n^{-1/2}V(x_{[tn]}), 0 \le t \le 1)$ converges in law to $(\sigma m_t, 0 \le t \le 1)$ with m. the Brownian meander.

Proof of Theorem

Study the behaviors of Z_n etc...

THANK YOU!