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Model of 1-d RWRE (Sn)

Let ω = {ωx , x ∈ Z} be a family of i.i.d. random variables (and no
constant) taking values in (0, 1).

Given ω, {Sn, n ≥ 0} is a Markov chain on Z with probability
transition :

x x+ 1x− 1

ω(x)1− ω(x)
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Asymptotic behaviors of (Sn)

References
P. Révész : Random walk in random and non-random
environments (1st edition : 1990, 2nd edition : 2005)
O. Zeitouni : Lecture notes Saint Flour 2001.

Recurrence/transience criteria : Solomon (1975)
(Sn) is recurrent if and only if E(log 1−ωx

ωx
) = 0 ;

Sn →∞ if and only if E(log 1−ωx
ωx

) < 0.
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How big is (Sn) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when Sn →∞, Sn
n% converges in law, with % ∈ (0, 1].

Recurrent case : Sinai (1982)’s localization

when (Sn) is recurrent, Sn
(log n)2 converges in law.

Question : What happens on trees ?
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RWRE on trees : Lyons and Pemantle (1992)

Random environments
Let T be a regular tree (or more generally a supercritical
Galton-Watson tree), rooted at ∅. Let ω = {(ω(x , y), y ∈ T)x∈T}
be a family of random variables such that

∑
y∈T:y∼x ω(x , y) = 1,

ω(x , y) > 0 iff x ∼ y (x ∼ y means x and y are adjacent).

Random walk in random environment (Xn) on a tree :
Conditioned on ω, (Xn) is a Markov chain taking values in T with

Pω
(
Xn+1 = y

∣∣Xn = x
)
= ω(x , y), ∀x , y ∈ T.
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Notations in a Galton-Watson tree T, rooted at ∅

x(1) x(2) · · · x(bx)

←
←
x

←
x

x

A(x) := ω(
←
x ,x)

ω(
←
x ,

←
←
x )

|x| generation of x

x0 = root

{x0, x1, ..., x|x|} such that

for any i, xi is the ancestor of x at i-th generation

x1

x2

x|x|
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Notations

Instead of looking at ω(x , ·), it is more convenient to use the

notation A(x) := ω(
←x , x)

/
ω(
←x ,
←
←x ) [referred as the biase].

When all A(x) = λ some positive constant, the walk is called
λ-biased walk on a Galton-Watson tree [Lyons, Pemantle and
Peres (1995, 1996)].
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Recurrence/transience criteria

Hypothesis :
We assume that for all |x | ≥ 2, {A(x (1)), ...,A(x (bx ))} are i.i.d. and
distributed as the vector {A1, ...,Ab}, where bx denotes the
number of children of x . Define

ψ(t) := logE
( b∑

i=1
At

i

)
, ∀t ∈ R.
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Lyons and Pemantle (1992)’s theorem :
1 if inf0≤t≤1 ψ(t) > 0, then RWRE (Xn) is a.s. transient.
2 If inf0≤t≤1 ψ(t) = 0, then RWRE (Xn) is a.s. recurrent.
3 If inf0≤t≤1 ψ(t) < 0, then (Xn) is a.s. positive recurrent.
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Subdiffusive case

Theorem (H. and Shi 2007)
If inf0≤t≤1 ψ(t) = 0 and ψ′(1) < 0, then almost surely,

max
0≤i≤n

|Xi | = nν+o(1),

where
ν := 1−max(12 ,

1
κ
) ∈ (0, 12 ],

and
κ := inf{t > 1 : ψ(t) = 0} ∈ (1,∞].
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Slow movement case

Theorem (Faraud, H. and Shi 2012)
If ψ(1) = ψ′(1) = 0, then almost surely,

lim
n→∞

1
(log n)3 max

0≤i≤n
|Xi | =

8
3π2ψ′′(1) .

Remark (G. Faraud)
If inf0≤t≤1 ψ(t) = 0 and ψ′(1) > 0, then (Xn) is positive recurrent.
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References

Aïdékon (2008) for rate of convergence in the transient case.
Ben Arous and Hammond (2012), Hammond (2013)
[subcritical/critical trees, stable laws].
If A(x) ≡ λ [informally κ =∞], see Peres and Zeitouni
(2008) for a CLT in the recurrent case, and Aïdékon (2013)
for a formula on the speed in the transient case.
(sub)diffusive case (κ > 2) : Faraud (2013) proved CLT for
κ > 5 ; E. Aïdékon and Loïc de Raphélis (convergence to
Brownian tree) for κ > 2.
Andreoletti and Debs (2011, 2013) for the local times and the
spread.
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Convergence in law for Xn

Critical case : ψ(1) = ψ′(1) = 0

When ψ(1) = ψ′(1) = 0, the associated potential process V is a
branching random walk in the "boundary case", where

V (x) := −
∑

y∈ ]]∅, x ]]
log A(y), ∀x ∈ T.

Question
Recall that max0≤k≤n |Xk | ∼ c(log n)3 a.s. What is the
renormalization for |Xn| ?
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Convergence in law for Xn

Main result

Theorem (H. and Shi’15+)
Under P

(
· |T =∞

)
,

σ2 |Xn|
(log n)2

(d)−→ X∞,

with P
(
X∞ ∈ db)/db =

√
1

2π b P
(
η ≤ 1√

b
)
, and σ2 = ψ

′′
(1).
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Convergence in law for Xn

Definition of η

η is the maximal drawdown of the Brownian meander m

m(s)

s10

η

Randomly biased random walks on trees
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Convergence in law for Xn

Maximal drawdown

Proposition∫∞
0

√
1

2π b P
(
η ≤ 1√

b
)
db = 1.

Proof of Proposition by Marc Yor (2013)

This is equivalent to show that E
[

1
η

]
=
√

π
2 , which can be done by

using the stochastic calculus...
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Finitely-dimensional convergence

Remark
For any κ ≥ 1 and 0 < t1 < t2 < ... < tκ ≤ 1,

(
|X[ti n]|
(log n)2 , 1 ≤ i ≤ κ)

are asymptotically independent and converge to the same limiting
law.
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Localization of the biased walk
Approximation by invariant measure

Sinaï’s localization : when X takes values in Z.

V (x)

x

0

log n

with large probability, Xn ≈ b(log n).

b(log n)

log n

Figure: Sinaï’s valley, where V denotes the potential process of X .

Randomly biased random walks on trees



Picture of the reflecting barrier L (γ)
n

x ∈ L (γ)
n is roughly equivalent to V#(x) > log n − γ log log n

but none of the ancestors of x does, where
V#(x) := max∅<z≤y≤x (V (z)− V (y)).

V (xi)

|x|

log n− γ log log n

0

i



Reflecting barriers

With high probability, the walk can not hit the red barrier,

but it could cross the blue one.

Barrier with log n− θ log log n, θ ≫ γ.

Barrier with log n− γ log log n.

Region of infinite ray {xi, i ≥ 0} such that
∑j

i=1 e
V (xi)−V (xj) ≤ n

(log n)γ for any j ≥ 1.

Figure: Two reflecting barriers L
(γ)
n and L

(θ)
n , γ < 2 and θ large
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Localization of the biased walk
Approximation by invariant measure

Invariant probability measure

Let πn(·) be the invariant probability measure of the biased
walk reflected at L

(γ)
n :

πn(x) ≈
1

Zn
e−V (x), x ≤ L (γ)

n .

Main step : Show that (modulo the parity of n)

the law of Xn ≈ πn(·).
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Localization of the biased walk
Approximation by invariant measure

Proof of Theorem : by assuming the approximation of
invariant measure

Pω(a ≤
|Xn|

(log n)2 ≤ b) ≈
∑

a(log n)2≤|x |≤b(log n)2

πn(x)

≈ 1
Zn

∑
a(log n)2≤|x |≤b(log n)2

1
(x<L

(γ)
n )

e−V (x),

with Zn =
∑

x≤L
(γ)
n

e−V (x).
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Localization of the biased walk
Approximation by invariant measure

Proof of Theorem : continuation

A functional limit theorem by Th. Madaule (2013+)
Choose |x | = n according to the probability propositional to
e−V (x). The linear interpolation of (n−1/2V (x[tn]), 0 ≤ t ≤ 1)
converges in law to (σ mt , 0 ≤ t ≤ 1) with m· the Brownian
meander.

Proof of Theorem
Study the behaviors of Zn etc...
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THANK YOU !
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