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Controlled Branching Processes (CBP)
- discrete stochastic population models

The two qualifiers, discrete and stochastic, simultaneously provide richness

and technical challenges in terms of measurements that can be made.

Although the models are relative simple and analytically tractable, they

provide understanding behind changing the number of individuals

in a population and a guide for developing of more complex models.

The emphasis will be on models’ general properties rather than

the applicability to any particular real-world system.
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φ-Branching Proc., Sevastyanov and Zubkov (1974), TPA

Let I be an (finite or infinite) index set. Define Z0 = z0 > 0,

Zn+1 =
∑
i∈I

φi (Zn)∑
j=1

ξj(n, i), n ≥ 0, (1)

where I is an index set and for i ∈ I

ξi = {ξj(n, i)}

- i.i.d., ≥ 0, integer-valued r.v.’s, (ind. for different i ’s).

{φi (n)} ≥ 0, integer-valued functions.
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Population Development in Two Phases

Reproductive Phase: the individuals produce offspring;
Control Phase: the number of potential progenitors is determined.

The individual reproduction law (offspring distribution) is not affected by
the control and remains independent of the population size.

Zn+1 =
∑
i∈I

φi (Zn)∑
j=1

ξj(n, i), n ≥ 0,

A very large class of stochastic processes including

I = {1, 2}, φ1(n) = n, and φ2(n) ≡ 1
- process with immigration;

I = {1, 2}, φ1(n) = n, and φ2(n) = max{1− n, 0}
- process with immigration at zero only.
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φ-BPs with random φ, N. Yanev (1975), TPA

Define Z0 = z0 > 0,

Zn+1 =
∑
i∈I

φi,n(Zn)∑
j=1

ξj(n, i), n ≥ 0, (2)

where the random variables φi = {φi ,n(k)} are ≥ 0 integer-valued

independent from ξi and such that for i ∈ I

P(φi ,n(k) = j) = pk(j), k = 0, 1, . . .
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Conditions for Extinction I

P(Zn → 0) + P(Zn → ∞) = 1 the extinction-explosion duality holds.

Let as k → ∞
φn(k) = αnk (1 + o(1)) a.s.,

where {αn} are i.i.d. (as α) and independent from the reproduction.

Then (N. Yanev(1975), TPA)

(i) If E [log(αEξ)] < 0, then P(Zn → 0) = 1.

(ii) If E [log(αEξ)] > 0, then P(Zn → 0) < 1.

T. Bruss (1980), JAP showed that the ”independence of reproduction”
assumption for {αn} above can be removed.
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Conditions for Extinction II

Mean Growth Rate (introduced by T. Bruss (1984), JAP)

τ(k) :=
1

k
E [Zn+1 | Zn = k] =

1

k
E [φn(k)]E [ξ]

For BGW process τ(k) = E [ξ] -offspring mean.

Denote qN := P(Zn → 0 | Z0 = N) - extinction probability.

Theorem (Gonzalez, Molina, del Puerto (2002), JAP)

(i) If lim supk→∞ τ(k) < 1, then qN = 1 for all N ≥ 1.

(ii) If lim infk→∞ τ(k) > 1, then qN < 1 for all N ≥ N0.
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Classification in terms of the mean growth rate

(Gonzalez, Molina, del Puerto (2005), JAP)

(i) Subcritical - lim supk→∞ τ(k) < 1.

(ii) Critical - lim infk→∞ τ(k) ≤ 1 ≤ lim supk→∞ τ(k).

(iii) Supercritical - lim infk→∞ τ(k) > 1.

Unlike the GWP, if the number of ancestors in the supercritical

CBP is not sufficiently large, then the extinction probability might be

one. This resembles the situation with the two-sex branching processes.

George Yanev, University of Texas Revisiting limit results for controlled BP 8 / 33



Critical Case

Following Gonzalez, Molina, del Puerto (2005), JAP we write

Zn+1 = Zn + g(Zn) + αn+1, n = 0, 1, . . . ,

where g(Zn) := E [Zn+1|Zn]− Zn and

αn+1 := Zn+1 − E [Zn+1|Zn] is a martingale difference.

Such stochastic difference eqns were studied by G. Kersting (1992), SPA.
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Critical Case I

Case I. Assume

(i) τ(k) = 1 + ck−1, c > 0, k = 1, 2, . . . ;

(ii) E [α2
n+1|Zn = k] = ak + O(1), a > 0;

(iii) Smoothness assumption on the p.g.f. of φ.

If 2ca−1 ≤ 1, then (Gonzalez, Molina, del Puerto (2005), JAP)

lim
n→∞

P

(
Zn

n
≤ z |Zn > 0

)
= E a/2(z) exponential c.d.f.

Note. The limit over non-extinction trajectories is exponential as in BGW
process, even thought the decay rate P(Zn > 0) ∼ kn−(1−2c/a) is different.
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Critical Case II

Case II. Assume

(i) τ(k) = 1 + ck−(1−α) + o
(
k−(1−α)

)
, c > 0, 0 < α < 1;

(ii) E [α2
n+1|Zn = k] = akβ + o

(
kβ

)
, β ≤ α+ 1, a > 0.

Then Zn, appropriately normalized and conditioned on non-extinction,

converges in distribution to either gamma or normal limits depending on

the values of α and β.
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Branching Processes with Migration
N. Yanev and K. Mitov (1980), C.R. Acad. Bulg. Sci.

Yn+1 =
Yn∑
k=1

ξk,n +M+
n 1{Yn>0} +M0

n1{Yn=0}, n = 0, 1, . . . , Y0 ≥ 0;

where the ”migration” is given for p + q + r = 1 by

M+
n =


−en probab. p, en individuals emigrate
0 probab. q,
in probab. r , in individuals immigrate.

and

M0
n =

{
i0n probab. r , i0n individuals immigrate at 0
0 probab. 1− r , no migration.

The emigration is regarded as ”reversed” (negative) immigration.
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Branching Processes with Migration

The particular choice of control functions φ allows for a detailed analysis
and interesting new findings.

BPs with migration include previously studied models with different
regimes of immigration and emigration.

Key Parameter: mean migration outside 0 over half offspring variance:

θ =
EM+

n

(Varξ)/2
.

{Yn} =


recurrent θ > 1
null-recurrent 0 ≤ θ ≤ 1
positive-recurrent θ < 0.
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Critical BP with Migration

Under moment assumptions, G. Yanev and N. Yanev (1996), LNS 114

(A) If θ > 0, then Yn
Var(ξ)n/2 → Γ(θ, 1)

- like in BP with immigration only.

If the rate of immigration is not too high, then it serves as a device for
maintaining the population.

(B) If θ = 0, then logYn

log n → U(0, 1)
- like in BP with immigration at 0 only.

(C) If θ < 0, then there is a limiting-stationary distribution,
i.e., Yn → Y∞ - new limiting result.

The predominant (on average) emigration leads to a proper (non-quasi)
limiting-stationary distribution in the critical case.
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Branching Processes with Non-Homogeneous Migration

N. Yanev and K. Mitov (1985), AP

Yn+1 =
Yn∑
k=1

ξk,n +M+
n 1{Yn>0} +M0

n1{Yn=0}, n = 0, 1, . . . , Y0 ≥ 0;

where the ”migration” is given for pn + qn + rn = 1 by

M+
n =


−en probab. pn
0 probab. qn
in probab. rn.

and

M0
n =

{
i0n probab. rn
0 probab. 1− rn.
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Decreasing to 0 and Balanced Migration: pn ∼ rn → 0

Key Condition: The series
∑

pk < ∞ (or
∑

rk < ∞).

Theorem 1 Let pn ∼ rn → 0. If
∑

pk < ∞, then

lim
n→∞

P

(
Yn

Var(ξ)n/2
≤ x |Yn > 0

)
= 1− e−x , x ≥ 0.

The convergence of the series
∑

pk and
∑

rk makes

the migration disappear without a trace so fast that the

limiting result is the same as in BGW process.
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Critical BP with Non-Homogeneous Migration II

Theorem 2 Let pn ∼ rn → 0. Assume
∑

pk = ∞

and pn ∼ lnn
−1, ln is a s.v.f. at ∞.

If limn→∞
ln log n∑∞
k=1 pk

=: C < ∞, then

lim
n→∞

P

(
logYn

log n
≤ x |Yn > 0

)
=

C

1 + C
x , 0 < x < 1 and

lim
n→∞

P

(
Yn

Var(ξ)n/2
≤ x |Yn > 0

)
=

C

1 + C
+

1

1 + C

(
1− e−x

)
x > 0.
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Critical BP with Non-Homogeneous Migration III

The non-degenerate trajectories of {Yn} are of two types:

(i) Yn ∼ nη1 , where η1 ∈ U(0, 1) with probab.
C

1 + C
;

(ii) Yn ∼ η2n, where η2 ∈ Exp

(
1

Varξ/2

)
with probab.

1

1 + C
.

This resembles the situation in BP with VE, D’Souza (1994), AAP, and
BP with decreasing immigration, Badalbaev and Rahimov (1978), TPA.

Open Problem Find additional conditions, which imply one or another type
of non-degenerate trajectories.
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Theorem 3 Let pn ∼ rn → 0. Assume
∑

pk = ∞ such that pk ∼ lkk
−v for

0 < v < 1, then

lim
n→∞

P

(
logYn

log n
≤ x |Yn > 0

)
= x , x ∈ (0, 1).

The migration approaches 0 in such a rate that the extinction is certain

and the asymptotic behavior on the non-extinction trajectories is as

that in Foster-Pakes process with immigration at 0 only.
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Alternating Regenerative Process

Regenerative process - from a random time on, is equivalent to what it
was at the beginning.

Regenerative processes can be seen as comprising of i.i.d. cycles.

Consider the vector (W ,R) with ≥ 0 and independent coordinates and its
i.i.d. copies (Wj ,Rj) for j = 1, 2, . . .

W and R are the working and repairing time periods, respectively, of an
operating system.

Denote for j = 1, 2, . . .

Tj = Rj + Wj

jth complete cycle jth ”repairing” time jth ”working” time
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Alternating Regenerative Process

For Sn :=
∑n

j=1 Tj , define N(t) := max{n ≥ 0 : Sn ≤ t} renewal process

and σ(t) := t − SN(t) − RN(t)+1.

Associate with each Wj a cycle process {zj(t) : 0 ≤ t ≤ Wj}.

Alternating Regenerative Process (ARP)

Z (t) =

{
zN(t)+1(σ(t)) when σ(t) ≥ 0 (machine is up for σ(t) time)
0 when σ(t) < 0 (machine is down).
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Migration and Regeneration: Definition

Branching Regenerative Process with Migration

Z (t) =

{
Y 0
N(t)+1(σ(t)) when σ(t) ≥ 0

0 when σ(t) < 0,

where {Y 0
j (t)} are with migration stopped at 0.

By definition σ(t) := t − SN(t) − RN(t)+1. That is

SN(t) t SN(t) + RN(t)+1 t SN(t)+1

↑ ↑
σ(t) < 0 σ(t) > 0

Note that Rj are not necessarily geometrically distributed.
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Migration and Regeneration: Interpretation

The queueing systems are good examples for regenerative processes.

Consider a queueing model with Poisson arrivals. The service periods are

composed of a busy part (non-empty queue) Wj and an idle part (empty

queue) Rj . The customers arriving during the service time of a customer

are her ”offspring”. The ”immigrants” (probably from another customer

pool) will be served in the end of the entire ”generation”. Alternatively,

some ”emigrants” may give up and leave the queue.
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Migration and Regeneration: Limit Theorems I
Let {Z} be critical and 0 < θ = EM+

t
Varξ/2 < 1/2.

Assume E [R] < ∞ or P(R > t) ∼ L(t)t−α for α ∈ (1/2, 1].

(G. Yanev, K. Mitov, N. Yanev (2006), J. Appl. Statist. Sci.)

(i) If there is a balance between the working and repairing time, i.e.,

0 ≤ c := lim
t→∞

P(R > t)

P(W > t)
< ∞,

then

P(
Zt

Var(ξ)t/2
≤ x) =

c

c + 1

− 1

(c + 1)B(θ, 1− θ)

∫ 1

0
y θ−1(1− y)−θ

(
1− e−x/y

)
dy .
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Migration and Regeneration: Limit Theorems II

(ii) If the repairing time dominates over the working time, i.e.,

lim
t→∞

P(R > t)

P(W > t)
= ∞,

then

P(
Zt

Var(ξ)t/2
≤ x) =

1

B(θ, α)

∫ 1

0
yθ−1(1− y)α−1

(
1− e−x/y

)
dy .

The distribution of the limit is a mixture of beta and exponential

distributions with mean of θ/(θ + α).
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BP with Reproduction-Dependent Immigration

Rahimov (1992), TPA

The evolution of the processes initiated by immigrants depends on the
”random environment” at the time of immigration.

Let ηk,n - number of immigrants at time k observed at a later time n.

µk,i (n) - the BGW process initiated by the ith immigrant arrived at time k .

Define a BR with Reproduction-Dependent Immigration by:

Zn =
n∑

k=1

ηk,n∑
i=1

µk,i (n − k).

The process µk,i (n) is called (k, i) process.
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BP with Reproduction-Dependent Immigration

Let wk,i
x - number of offspring of individual x from the (k , i) process.

Define
Fk,i (n) := σ{wk,i

x , x ∈ In−k}

-σ-algebra generated by the evolution of the (k , i) process up to time n.

Assumption on the Immigration For any integer j ≥ 0 and 0 ≤ k ≤ n

{ηk,n ≤ j} ∈ Fk,j(n) =
k−1∏
l=1

ηl,n∏
i=1

Fl ,i (n)×
j∏

i=1

Fk,i (n)×F0,

i.e., ηk,n is a double stopping time with respect to Fk,j .
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BP with Reproduction-Dependent Immigration

Example 1 Let ξk ≥ 0, k = 0, 1, . . . be independent and integer r.v.s.

Define the immigration by η0 = ξ0 a.s. and for a given set B

ηk =


ξk when Z ∗

k ∈ B

0 when Z ∗
k /∈ B, where Z ∗

k =
k−1∑
i=0

ηi∑
j=1

µi ,j(k − i), k ≥ 1.

In particular, if B = {0}, then - BP with immigration at zero only.

George Yanev, University of Texas Revisiting limit results for controlled BP 28 / 33



BP with Reproduction-Dependent Immigration

Example 2 Let ξk ≥ 0, k ≥ 0 be integer r.v.s and rn be positive numbers.

Define the immigration for 0 ≤ k ≤ n by

ηk,n := max

{
j :

j∑
i=1

µk,i (n − k) ≤ rnξk

}
.

We have a process such that approximately the same number of

immigrants, who joined the population together, are alive at any time n.
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Controlled BP with Continuous State Space

Adke and Gadag (1995), LNS 99, Rahimov (2007), Stoc. Anal. Appl.

Situations when a nonnegative variable (e.g., volume or weight) associated
with the individuals is measured.

Xn+1 =

Nn+1(Xn)∑
i=1

Wi (n + 1) + U(n + 1),

where {Wi (n)} and {U(n)} are ≥ 0 but non-integer-valued and {Nn(x)}
are counting processes with independent stationary increments. The three
sets are mutually independent.

Recent monograph:

S. Aliev, Y.I. Yeleyko, and I.B. Bazylevych (2010). Limit Theorems and

Transitional Phenomena in the Theory of BPs, VNTL Publishers, Ukraine.
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More Controlled Branching Processes

(i) del Puerto and N. Yanev (2004), J. Appl. Statist. Sci. - Multitype
CBP.

(ii) P. Mayster (2005), JAP introduced the Alternating BP - controlling a
BP by means of another BP.

(iii) Gonzalez, Minuesa, Mota, del Puerto, and Ramos (2015), Lithuanian
Math. J. - CBP in varying environment.

(iv) T. Bruss and M. Duerlinckx (2015), AAP - Resource-Dependent BP.
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Concluding Remarks

This survey is by no means exhaustive. Not included here are some

classes CBPs such as: branching processes with barriers

(see Zubkov (1972), Bruss (1978), Schuh (1976), Sevastyanov (1995)),

and CBPs with random environments.

Closed relations were established between CBP and other classes, e.g.,

two-sex processes and population-size dependent processes.

There is no doubt, that the CBP have a great potential as modeling tools.

In my opinion, they deserve more attention from the branching processes’

community.
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Concluding Remarks

We paid special attention to the processes with migration, which have

been a subject of systematical research investigations by the Bulgarian

School in branching processes under the direction of its founder Professor

Nikolay Yanev a.k.a. the Captain.
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