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The GBP allows for a woman to have many births during her life at different

Pl times. This flexibility allows the model to be used in practice.

Trayanov
Introduction Use in demographics

We can use the GBP to calculate the Malthusian parameter of the population
and how it evolved in time.

Forecasting

The model gives us the expected future population, i.e. a forecast. In addition
because of the continues time of the model this forecast is actually a little more
accurate than the usual discrete demographic forecast made on yearly basis.
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The life length of a person is modeled as random variable A, where
x is an index. (can be thought of as the ID number or n-tuple).

A Brief Review H
o U Birth process

A natural candidate for a model of birth process is the point
process. It is a stochastic process describing the number of
children a woman has in every moment of her life. It is denoted by
&« (x is the ID).



Demographic Interpretation
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NAl;r‘::chil &(t) - child count of woman aged t. The number of children born to a woman
in the age interval [a, b] is denoted by £[a, b] and is an integer random variable.
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The expected number of births is u[a, b] = E(&][a, b]). It is the average number
of children born to a woman in this age interval. It is natural to assume p(t) to
be a smooth function. We can assume that children can’t give birth so

&(t) =0 and p(t) =0 for t < 12.

A Brief Review
of the Theory

For a human population is natural to assume a smooth function for
distribution of time of death - L(t). So the survivability S(t) =1 — L(t) is
smooth too. We can assume that S(0) =1 n S(w) = 0, where w is the
greatest age in the life tables.



The General Branching Process
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0, otherwise

A Brief Review
of the heory Definition 1

General Branching Process (GBP) is

=3 zZ(x),

xel

where | is the index set of all n-tuples, for all n.
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A Brief Review
of the Theory

The General Branching Process

Let us denote f(s) = E(s¢(°)), |s| < 1, L(t) = P(\, < t), i is the
Laplace-Stieltjes transformation of p(t) = E£(t) and
S(t) =1-L(t).

Theorem 1

(see Jagers, Branching Processes with Biological Application,
Chapter 6, 1975)

Iff(s) < oo,|s| <1, then my = E(z;) < 00,Vt and m? = E(z7)
satisfies

t

m =Yoo - LO}+ [ mEu(d).  (@21)



Adjusted GBP. Notation
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Jagers
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Numerical Let pz7 be the number of individuals younger than a at time t, that started
Approach from a woman aged b at time 0. When a = oo and b = 0 we can skip a and b

so z; denotes the population at time t started from a woman aged 0 at time O.

Plamen
Trayanov
Let p€ is her point process and pu is the expectation of the point process
Adjusted GBP Let S is her survivability function.

Let np = P(£[b, b+ 1) = 1|\ > b) be the probability a woman to give birth at
age b if she survived to the beginning of this age interval.

We have that pu(t + b) = E(&(t + b)|XA > b),t > b and
pS(t) =P(A > b+ t|A > b).



Previous Results
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We can model pu(t) from the data:
Plamen (see Trayanov, Pliska Stud. Math. Bulgar. 22, 2013)

f=vancy For k > 1 the distribution of L& satisfies

P(oé[b+k—1,b+ k) =1) = 1 — P(uE[b+ k — 1, b+ k) = 0)
=5bS(b+k—1) npik_1
Adjusted GBP

and the expected number of births in [b+ k — 1, b+ k) of a woman aged b is

bulb+k —1,b+k)=pS(b+k—1) npyk—1



Results
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Mumerical IfF <1andS(b) >0, th =E Vt and th
Approach (s) < oo, [s] < and ! (b) >0, then pm: = (.bZt) < 00, Vt and the
expected number of individuals younger than a at time t, started from a
Plamen woman aged b at time zero, ,m3 = E(pz7) satisfies
Trayanov

b = bS(Li0.0-y () + [ mE_y bl dl), (3.1)
0

Adjusted GBP

where ,S(t) = S(( )) denotes the probability a woman aged b to survive to

b+t and pu(t+ b) = L0

In addition if S(t) and p(t) are twice differentiable on t, then ,m2 is twice
differentiable both on t for t % a — b and on b for b # a. Although derivatives
don't exist in these points, there exist left and right derivatives, that are not
equal to each other. If a = co then p,m; is twice differentiable for all ¢t > 0.
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Results

Let w be the maximum age of the life table, i.e. P(A > w) = 0. In other words
it is the maximum age a person can reach, We can assume it is multiple of h.

Let N¢[bh; (b+ 1)h) be the number of women in the age interval [bh; (b+ 1)h)
at time t. For example if the branching process started from one woman of age

w/h
0 at time O then we have z; = Y N¢[bh; (b+ 1)h) and
b=0

Ne[bh; (b + 1)h) = zPh+h — zbh,

No [bh;(b+1)h)
Let CZ[bh; (b+1)h) =E > n; 28, where n; € [bh; (b+1)h) is a

i=1
random variable denoting the age of woman /. We can see that
CZ[bh; (b + 1)h) represents the expected number of people at time t on age
less than a, who are descendants of the people on age [bh; (b + 1)h) at time
t = 0. For example if the branching process started from one woman aged 0 at
time 0, then C2[0; h) = m2, CZ[bh; (b + 1)h) =0 for b > 1.



Results

If we assume certain properties for the distributions of 7; we can derive the

Crump-Mode-
Jagers following numerical approximation.
Branching
Proess & Theorem 3
Numerical
Approach Let m; have absolutely continuous distributions with probability density
. functions f,,(u), defined on the interval [bh; (b+ 1)h). Lets assume f,., S(t)
Trayanov and p(t) are twice differentiable and a & [bh, (b + 1)h). Then the following
numerical approximation holds for h — 0:
CZ[bh; (b + 1)h) = ENg[bh, (b + 1)h)ppm?2 + O(h3),
Adjusted GBP where for t = h we get

CEIbh; (b + 1)h) = ENo[bh, (b + 1)h)[p, S(h)1{a > (b+ 1)k} + ppulbh; (b + 1)h)] + O(h3),
In addition if p(t) is thrice differentiable, then
Cf[bhi (b + 1)h) = ENg[bh, (b + 1)h)[pS(h){a > (b + 1)k} + pyu’ (bh)A] + O(h3),

where a > 0,b > 0.



Results
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Approach Ne[bh, (b + 1)h).
Plamen Theorem 4

R Let n; have twice differentiable probability density functions f,.(u) on the

interval [bh; (b + 1)h). Let S(t) and p(t) are thrice differentiable and
[0, i] = 0. Then the following numerical approximation holds for h — 0:

ENgp[(b+ 1)h; (b + 2)h) = EN¢[bh, (b + 1)h)pnS(h) + O(h3),
w/h

EN ., 4[0; h) = S [EN:[bh, (b + 1)h)ons’ (bh)H] + O(H?),
b=0

Adjusted GBP

where a > 0,b > 0.
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0S(h) 0 . 0
L= | O WS(h) - 0
Adjusted GBP 0 0 . wfhs(h) (w/hyx (/h)
O(h?)
O(h?)
Let [O(R?)] = | . = 1 U/
o(h?)

(w/h)x1
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dR2each Let No[0, +00) = No[b, b] = 1, i.e. we have only one individual at time zero

Plamen and she is of age b. For all k < t/h we have

Trayanov

pme = [1] - AK - [EN;_yp] + O(h). (3.2)

Adjusted GBP Corollary 1

Substituting h = 1,k = 1 in Theorem 4 we get the well known method in
demographics - Leslie matrix projection (see Keyfitz [4]). We see that Leslie
matrix projection is actually a numerical method for solving the renewal
equation for me. In addition we can see that the estimation error of this
demography method is actually O(h).
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Corollary 2

If we substitute b= 0,k = t/h in Theorem 5 we get a numerical estimation for
the expected future population count of the GBP (shown in Theorem 1).

onl0,h) pulh,2h) - opulw — W)€
0S(h) 0 0 0
me~[t 1 o 1] O nS(h) - 0 ,
0 0 - . aS(h) .
Implications

- It is a very fast method for computing the solution of the renewal equation
me.

- On every step of the method we have the expected age structure in addition
to the total population count. And that doesn’t costs us additional time for
solving other renewal equations.

- The well-known discrete demographics method "Leslie matrix projection"is
related to the theory of General Branching Processes.

- The error of Leslie matrix projection is calculated to be O(h) using GBP
theory.
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Theorem 5. Sketch of Proof

The plan

First we show that E,m; = [1] - AX - [EN,_p] + O(h), for branching process
starting from one individual aged 7 at time zero, where 7 is a random variable
with twice differentiable probability density function, defined on the interval
[b, b+ h).

Then we will show that E,m: = pym: + O(h), which proves that

pme = [1] - AK - [EN,_yp] + O(h). The latest is almost obvious due to the fact
that ,m; is a smooth function of u and n € [b, b+ h).
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Theorem 5. Sketch of Proof (2)

w/h
bZ::l nhi[(n — 1)h; nh)O(h?)
We must prove that A - O(h?) = 0S(h)O(h?) = [O(h?)].

w_nS(h)O(h?)

Wehavethatshhsh Stnhih)S(nh
ahS(h) =1+ (S(n J;(,)J) (nh)) _ 1+ (S(nh+ l): (nh)) . S(:h) - 5'(0) - 0 _o.
This means that ,;,S(h)O(h?) = O(h3) when h — 0.

1

In/ﬁddition /h

2:)1 nhit[(n — 1)h; nh)O(h?) = 2::1 (bt ((n = 1)h)h + O(h%))O(h?) =
w/h

3> antt/((n— 1)h)O(K) = w/h- O(h?) = O(h?).

n=1



Theorem 5. Sketch of Proof (3)
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o We will prove that [EN;] = AX - [EN,_ 4] + [O(h?)] with induction. Using

Tr:yr::gv Theorem 4 for k = 1 we have that [EN¢] = A - [EN,_p] + [O(h?)] and the
statement is obvious. Let’s assume the statement is true for k — 1, i.e.
[EN¢] = AA=1 - [EN,_(k_1)n] + [O(h?)] and prove it for k.

Adjusted GBP The functions S(t) and pu(t) are smooth, so the moments of birth of new
individuals have an absolutely continuous distributions. The first individual in
the population at time zero has a random age, which is an absolutely
continuous random variable, so at any time all individuals in the population
have absolutely continuous random ages.



Theorem 5. Sketch of Proof (4)
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Trayanov [ENt] — Ak-1. [IENtf(kfl)h] —+ [O(hz)] = Ak. [ENt—kh] +A- [O(hz)] P [O(hz)]
We have already proven that A - [O(h?)] = [O(h?)], so
[ENg] = A¥ - [EN;_gp] + [O(h?)], which completes the induction.

We have that [1] - [O(h?)] = Wz/:h O(h?) = w/hO(h?) = O(h), so
b=1

Eqme = [1] - [ENe] = [1] - AK - [EN;_gp] + [O()].
We have tt’hit

Adjusted GBP

b+h
Eyme = [ umef(u)du = bf (pm¢ + O(h))f(u)du = pm: + O(h), so

b
pme = [1] - AX - [EN,_yp] + O(h), which completes the proof.
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which is the same as

Adjusted GBP log(myip) — log(me)

h

— a,t — o0.

So « is approximately (log(m;))’ for large t assuming m; is smooth function.
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Some Practical
Results

The software used for calculation is R with additional packages -
demography and mgcv.

The data used to model the population can be found on eurostat
database website:
http://epp.eurostat.ec.europa.eu/portal/page/portal/
statistics/search_database.


http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
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