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Introduction
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Motivation

The motivation behind this research is to develop appropriate mathematical models to
describe the demographic dynamics of animal populations with sexual reproduction.

As a possible application, we use the models introduced here to describe the evolution
of certain salmon populations.
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Motivation

Why salmons?
Salmons are born in fresh water, spend most of their life in the sea and, at ti-
me of reproduction, females and males return to fresh water to spawn (two-sex
population).
The female releases her eggs. The fecundity of a female depends on both genetic
and environmental components (different strategies in the reproduction).
The male fertilizes the eggs. More than one male often competes for a spawning
female (different strategies in the mating).
It is a semelparous species, i.e. salmons spawn only once and then both parents
die (non overlapping generations).
Salmon populations have declined due to several random factors: not all the coup-
les reach the spawning process (control on the number of progenitor couples).
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Modelling

In order to model a population with these features, we have develop two discrete time
branching processes which consider two-sex populations:

In the first one the number of couples who produce new offspring couples varies
in a non-predictable way.

In the second one several mating and reproduction strategies are carried out by fe-
males, males and couples in the population. Moreover the strategy put into prac-
tice depends on the number of females and males in the population, not on the
number of couples.
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Two-sex branching process with random
number of progenitor couples
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Definition of the process

We define the two-sex branching processes {(Fn,Mn)}∞n=1:

Assume that in a given generation n, there are Zn couples in the population.
From these couples, a random number φn,Zn will reach the reproduction time (pro-
genitor couples).

Now we define mathematically the variables (Fn+1,Mn+1) and Zn+1

(Fn+1,Mn+1) =

φn,Zn∑
i=1

(fn,i,mn,i), Zn+1 = LZn(Fn+1,Mn+1)

Initially, it is assumed a positive number k0 of couples in the population, i.e. Z0 = k0.
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Intuitive interpretation: reproduction

(fn,i,mn,i) represents the numbers of females and males descending from the ith
progenitor couple in the nth generation.

Mathematically, given φn,Zn , the random vectors (fn,i,mn,i), i = 1, . . . , φn,Zn , are
independent and with the same probability distribution irrespectively of n, called
the offspring distribution {pk,l}∞k,l=0.

The sum of these random vectors gives the random vector (Fn+1,Mn+1), which
represents the numbers of females and males at (n + 1)st generation.
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Intuitive interpretation: mating

The function LZn determines the number of matings (couples) in the (n + 1)st
generation, given that the population size in generation n was Zn.

Mathematically, the mating functions {Lk}∞k=0 are assumed to be non-decreasing
in each argument, integer-valued on the integers, and such that

Lk(0,m) = Lk(f , 0) = 0, f ,m ∈ N

The Fn+1 females and Mn+1 males in the (n + 1)st generation form Zn+1 =
LZn(Fn+1,Mn+1) couples.
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Intuitive interpretation: progenitor couples

Given that Zn+1 = k, the random variable φn+1,k will determine the number of proge-
nitor couples in the n + 1st generation.

When φn+1,k > k, the immigration of φn+1,k − k progenitor couples occurs.

If φn+1,k < k, then k− φn+1,k couples leave the population and do not participate
in the reproduction phase.

Mathematically, for a fixed k, the variables {φn,k}∞n=0 are independent identically dis-
tributed. Moreover, φn,k is independent of (fn,i,mn,i) for all i.
It is also assumed that P(φn,0 = 0) = 1 and P(φn,k = 0) < 1.

M. Mota (University of Extremadura, Spain) April, 2015 12 / 48



Extinction and growth

We define the extinction probability when initially there are k0 couples in the populati-
on by:

Qk0 = P( lim
n→∞

Zn = 0 | Z0 = k0)

Proposition
Assume that one of the following conditions is satisfied:

c1: P(φ0,k = 0) > 0, k = 1, 2, . . . .

c2: max{P(f0,1 = 0),P(m0,1 = 0)} > 0.

Then
P( lim

n→∞
Zn =∞ | Z0 = k0) = 1− Qk0
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Extinction and growth

We define the expected growth rate per couple when there are k couples in the previous
generation by

Rk =
1
k

E[Zn+1 | Zn = k]

Proposition
Assume

(i) Lk(x1 + x2, y1 + y2) ≥ Lk(x1, y1) + Lk(x2, y2), x1, x2, y1, y2 ∈ R+.

(ii) Lk(x, y) ≤ Lk+1(x, y), x, y ∈ R+.

(iii) P(φ0,k+l ≤ t) ≤ P(φ0,k + φ0,l ≤ t), t ∈ R.

Then the asymptotic growth rate R = lim
k→∞

Rk exists and

R = sup
k≥1

Rk
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Extinction and growth

Proposition
Under the previous assumptions:

(a) If R ≤ 1 then Qk0 = 1 for every k0.

(b) If R > 1 and supk≥1 k−1Var[Zn+1 | Zn = k] <∞ then, there exists a positive
integer K such that Qk0 < 1 for every k0 ≥ K.

M. Mota (University of Extremadura, Spain) April, 2015 15 / 48



Time to extinction

Let T = inf{n ∈ N : φn,Zn = 0} be the number of generations until the extinction
occurs (extinction time).

Assuming extinction, next result provides the probability distribution of T for a fixed
number of couples in the population, k0:

Proposition
The following statements hold:

1 P(T = 0 | T <∞) = Q−1
k0
ξk0(0),

2 P(T = l | T <∞) = Q−1
k0

∞∑
j=0

ξj(0)(πl,j − πl−1,j), l = 1, 2, . . .

where ξk(s) = E[sφ0,k ] and πi,j = P(Zi = j), k, i, j ∈ N, s ∈ [0, 1].
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Bayesian inference

From a nonparametric setting, we investigate the Bayesian inference on the offspring
distribution

p = {pk,l}(k,l)∈S

provided that its support S is finite.

We consider the observation of the following data up to the nth generation is reached:

An = {Zi, Zi,(k,l), (k, l) ∈ S, i = 0, . . . , n}

where

Zi,(k,l) =

φi,Zi∑
j=1

I{(k,l)}((fi,j,mi,j)), i = 0, . . . , n

i.e. the number of progenitor couples in the ith generation giving rise to exactly k
females and l males.

Therefore, it is not necessary to observe the entire tree. Notice that

φi,Zi =
∑

(k,l)∈S

Zi,(k,l), (Fi+1,Mi+1) =
∑

(k,l)∈S

(k, l)Zi,(k,l)
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Bayesian inference

An appropriate conjugate class of prior distributions on p is the Dirichlet family:

π(p) = Dτ
∏

(k,l)∈S

pτk,l−1
k,l

where τ = (τk,l; (k, l) ∈ S), τk,l > 0, and Dτ a normalizing constant.

Given the information included in An, the posterior distribution of p is the Dirichlet
law:

π(p | An) = Dγ
∏

(k,l)∈S

pγk,l−1
k,l

with Dγ a normalizing constant and

γk,l = τk,l + Yn,(k,l) with Yn,(k,l) =

n∑
i=0

Zi,(k,l) , (k, l) ∈ S
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Bayesian inference

Consequences

The marginal posterior distribution of pk,l is a Beta distribution with parameters
γk,l and γ∗ − γk,l, with γ∗ =

∑
(k,l)∈S γk,l.

Considering squared error loss function, the Bayes estimator of pk,l is given by:

p̂k,l = E[pk,l | An] = (γ∗)−1γk,l, (k, l) ∈ S
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Application

The two-sex branching process introduced seems appropriate to describe the evolution
of populations of salmons by considering that:

Non overlapping generations.
Formation of couples necessary for reproduction.
The random variation between the number of couples and the number of pro-
genitor couples, due to random environmental factors or to the arrival of new
individuals to the spawning area.
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Application

On the basis of the works by Kendall et al. (1984) and Laufle et al. (1986) we made the
following assumptions:

1. φ0,k is distributed according to a Poisson law with mean c1(k), k = 1, 2, . . . . The
variable φ0,0 is assumed to be the degenerate at zero law.

2. Lk(x, y) = min{x, bc2(k)yc}, x, y ∈ R+, where c2(k) ∈ (0, 1] is a reduction
coefficient representing the competitiveness among males for a spawning female.

In particular, appropriate values for c1(k) and c2(k) could be
c1(k) = 0.25I[0,λ/2](k) + log(k2)I(λ/2,λ)(k) + λI[λ,∞)(k),

c2(k) = k(k + λ)−1

with λ a threshold for the number of couples in the population.
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Application

Since real data were not available, we have simulated the data of 30 generations of a
salmon population with a threshold λ = 195 and offspring distribution

pk,l 0 25 45 65 90
0 0.035 0.02 0.04 0.02 0.035

15 0.02 0.04 0.08 0.04 0.02
30 0.04 0.08 0.06 0.08 0.04
45 0.02 0.04 0.08 0.04 0.02
60 0.035 0.02 0.04 0.02 0.035

According the works by Kendall et al. (1984) and Laufle et al. (1986) these are reaso-
nable values.

The marginal means and variances, and the covariance associated to this distribution
are:

µ1 = 30, µ2 = 45, σ11 = 360, σ22 = 767.5, σ12 = σ21 = 0
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Application

Simulated Data

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

Couples vs Progenitor Couples

Generation

C
ou

nt
s

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

00
30

00
50

00
70

00

0 5 10 15 20 25 30

●
●

● ●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●
●

Progenitor Couples

Generation

C
ou

nt
s

0
50

10
0

15
0

20
0

0 5 10 15 20 25 30

M. Mota (University of Extremadura, Spain) April, 2015 23 / 48



Application

Estimates of pk,l

Estimates of pk,l using the non-informative Dirichlet prior distribution:

p̂k,l 0 30 45 60 90
0 0.0340 0.0201 0.0365 0.0185 0.0337

15 0.0208 0.0385 0.0821 0.0398 0.0204
30 0.0405 0.0816 0.0624 0.0742 0.0376
45 0.0228 0.0391 0.0836 0.0378 0.0239
60 0.0360 0.0215 0.0387 0.0197 0.0358

Notice that
max

(k,l)∈S
{|p̂k,l − pk,l|} = 0.0058
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Application

Estimates of p0,25 and p3065
Estimates and (exact) 95% HPD intervals for p0,25 and p30,65:
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Application

Estimates of µ1 and µ2

Estimates and empirical 95% HPD intervals for µ1 and µ2 based on Montercarlo
approximations of their posterior distributions:
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Two-sex branching process with several
mating and reproduction strategies
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Definition of the process

Let Ll : N2 → N, l = 1, . . . ,Nm be functions, non-decreasing in each argument
and such that Ll(f , 0) = Ll(0,m) = 0, f ,m ∈ N. These functions will be referred
as mating functions.

Let {p(h)
k,j }(k,j)∈Sh be offspring probability distributions, with support Sh ⊆ N2,

h = 1, . . . ,Nr, respectively.
Consider the functions

ψ : N2 → {1, . . . ,Nm} , ϕ : N2 → {1, . . . ,Nr}

Their role is to determine, according to the numbers of females and males in the
population, the mating function and the offspring distribution to be considered in
the mating and reproduction processes (strategies), respectively.
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Definition of the process

We define the two-sex branching processes {(Fn,Mn)}∞n=1:

Assume that in a given generation n, there are Fn females and Mn males in the
population.
If ln = ψ(Fn,Mn), then consider the mating function Lln .
The number of couples in the nth generation is Zn = Lln(Fn,Mn).

If hn = ϕ(Fn,Mn), then consider the offspring distribution {p(hn)
k,j }.

Given Zn, take (f (hn)
n,i ,m(hn)

n,i ), i = 1, . . . ,Zn i.i.d. random variables with probability

distribution {p(hn)
k,j }.

The number of females and males in the (n + 1)st generation, (Fn+1,Mn+1), is

(Fn+1,Mn+1) =

Zn∑
i=1

(
f (hn)
n,i ,m(hn)

n,i

)

Initially, consider f0 females and m0 males in the population, i.e. (F0,M0) = (f0,m0).
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Bayesian inference

Assume the offspring distributions belonging to the bivariate power series family:

p(h)
k,j = (Ah(θh,1, θh,2))

−1 a(h)
k,j (θh,1)k(θh,2)j , h = 1, . . . ,Nr

with Ah(θh,1, θh,2) a normalizing constant, and (θh,1, θh,2) ∈ Θh.

For every h, our interest will be focused on the reproduction means:

µ
(h)
1 = E[f (h)

0,1 ] , µ
(h)
2 = E[m(h)

0,1 ] , h = 1, . . . ,Nr
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Bayesian inference

Our data will be the numbers of females and males until generation n:

An = {(F0,M0), (F1,M1), . . . , (Fn,Mn)}

Notice that the number of couples is also given by

Zj = Llj(Fj,Mj) j = 1, . . . , n

with lj = ψ(Fj,Mj).
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Bayesian inference

The likelihood function satisfies:

L(θ1,1, θ1,2, . . . , θNr,1, θNr,2 | An) ∝
Nr∏

h=1

(Ah(θh,1, θh,2))−Z∗
h (θh,1)F∗

h (θh,2)M∗
h

where

Z∗h =

n∑
j=1

Zj−1Ij,h, F∗h =

n∑
j=1

FjIj,h, M∗h =

n∑
j=1

MjIj,h

with

Ij,h =

 1 if ϕ(Fj−1,Mj−1) = h

0 if ϕ(Fj−1,Mj−1) 6= h

i.e. the sum of observations for the hth reproduction strategy.
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Bayesian inference

An appropriate conjugate class of prior distributions is:

π(θ1,1, θ1,2, . . . , θNr,1, θNr,2) =

Nr∏
h=1

δ−1
αh0,αh1,αh2

(Ah(θh,1, θh,2))−αh0 (θh,1)αh1 (θh,2)αh2

with δαh0,αh1,αh2 a normalizing constant.

The posterior distribution of (θ1,1, θ1,2, . . . , θNr,1, θNr,2) is:

π(θ1,1, θ1,2, . . . , θNr,1, θNr,2 | An) =

Nr∏
h=1

δ−1
αh0∗,α∗

h1,α
∗
h2

(Ah(θh,1, θh,2))−α
∗
h0 (θh,1)α

∗
h1 (θh,2)α

∗
h2

where:
α∗h0 = αh0 + Z∗h , α∗h1 = αh1 + F∗h , α∗h2 = αh2 + M∗h
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Bayesian inference

Consider the marginal posterior distribution of the parameter (θh,1, θh,2)

π(θh,1, θh,2 | An) = δ−1
αh0∗,α∗

h1,α
∗
h2

(Ah(θh,1, θh,2))−α
∗
h0 (θh,1)α

∗
h1 (θh,2)α

∗
h2

The Bayes estimator of certain parameter η(h) = η(θh,1, θh,2) based on the sample An

and considering squared error loss function, is determined as follows:

η̂(h) = δ−1
αh0∗,α∗

h1,α
∗
h2

∫
Θh

η(θh,1, θh,2)(Ah(θh,1, θh,2))−α
∗
h0 (θh,1)α

∗
h1 (θh,2)α

∗
h2 dθh,1dθh,2
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Application

The two-sex branching process introduced seems appropriate to describe the evolution
of populations of salmons by considering that:

Non overlapping generations.
Formation of couples necessary for reproduction.
Different mating and reproduction strategies are put into practice depending on
the females and males in the population.
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Application

Since real data were not available, we have simulated the data of 20 generations of a
salmon population. Using again as reference the works by Kendall et al. (1984) and
Laufle et al. (1986) we made the following assumptions:

Mating strategies
Consider three mating strategies (Nm = 3):

1 L1(f ,m) = bmc1c , (L1(0,m) = 0)

2 L2(f ,m) = bmin{f ,m}c1c
3 L3(f ,m) = bfc1c , (L3(f , 0) = 0)

where c1 ∈ (0, 1) represents the rate of decline in the smolt population due to predators,
human activity and other environmental factors.
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Application

Reproduction strategies
Consider two reproduction strategies (Nr = 2):

1 p(1)
k,j = e−75(40)k(35)j(k!j!)−1

2 p(2)
k,j = e−75(35)k(40)j(k!j!)−1

Both are product of independent Poisson laws, which depend on the expected numbers
of females and males per couple:

µ
(1)
1 = σ

(1)
11 = 40 , µ

(1)
2 = σ

(1)
22 = 35

and
µ

(2)
1 = σ

(2)
11 = 35 , µ

(2)
2 = σ

(2)
22 = 40
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Application

Strategy election
The mating and reproduction strategies followed by the salmon, in a given generation,
are modeled through the functions ψ and ϕ defined as follows:

ψ(f ,m) =


1 if mf−1 ≤ c−1

2

2 if c−1
2 < mf−1 < c2

3 if mf−1 ≥ c2

, ϕ(f ,m) =

 1 if f ≤ m

2 if f > m

where c2 > 1 can be seen as a threshold for the proportion between females and males.

M. Mota (University of Extremadura, Spain) April, 2015 39 / 48



Application

Simulated Data
By considering: f0 = 300, m0 = 80, c1 = 0.04 and c2 = 1.15, we obtained the
following simulated data:
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Application

Estimates of µ(1)
1 and µ

(1)
2

Estimates and empirical 95% HPD intervals for µ(1)
1 and µ(1)

2 based on Montecarlo
approximations of their posterior distributions:
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Application

Estimates of µ(2)
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Conclusions

Two-sex branching processes are proved to be adequate models to describe the
dynamics of certain animal populations.
In particular they are specially adequate for semelparous species as for example
salmon.
In the models introduced, we pay special attention to some characteristics of the
population, the models do not become too complicated.
The accuracy of the models has been checked by the way of simulation.
However, real data would be necessary for an adequate calibration of the models.
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