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Introduction

It is known that a branching process is said to be in varying
environments if the offspring distributions of the particles
change with time.

Most of the classical branching processes have been studied
also in varying environments.
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The problem we consider

In the talk we consider Bienaymé-Galton-Watson branching
processes with geometric distribution of the offspring and an
immigration component.

The parameter of the offspring distribution changes from
generation to generation so that:

- the mean number of the offspring is always equal to one
(critical process)

- the variance tends to infinity.
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The investigation of such processes was initiated in

K.M. and G.Yanev, A critical branching process with increasing
offspring variance, Proc. 30-th Spring Conf. of UBM, Sofia,
BAS, 2002, 166-171,

where we consider the processes without immigration.
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Motivation - 1

It is known that the limiting behaviour of critical branching
processes essentially defers in cases with finite and infinite
variance.
The immigration changes the behaviour of any branching
process, in dependence of the number of immigrants. We
consider two regimes of immigration: with finite and infinite
mean number of immigrants.
Both varying environments and the immigration make the
BGW branching processes more flexible and enlarge the
possible applications of these processes.
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Motivation - 2

Our work was motivated also by the pure technical problem for
the asymptotic behaviour of the sum of the following kind:

n∑
j=1

1
1 +

∑n
k=j c(k)

,

depending on the behaviour of c(n), as n→∞.

Kosto V. Mitov and Edward Omey BPI in Varying Environments



Definitions and notations

Definition

Y0 = 0, Yn+1 =
Yn+In∑
i=1

Xi(n + 1), (
0∑

i=1

. = 0), n = 0,1,2, . . . .

The random variables Xi(n), i = 1,2, . . . ; n = 0,1,2, . . . are
independent and identically distributed for every fixed n
but the distribution varies with n form generation to generation.

The numbers of immigrants {In : n = 1,2, . . .} are iid integer
valued non negative random variables, independent of X ’s with
p.g.f. g(s) = E [sIn ].
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Definitions and notations

For the offspring distribution we assume that

Pr(Xi(n) = 0) = 1− p(n),

Pr(Xi(n) = k) = p(n)2(1− p(n))k−1, k = 1,2, . . . , (1)

for i = 1,2, . . . and n = 1,2, . . . .
We denote

m(n) = E [Xi(n)] = 1, σ2
n = Var [Xi(n)] = 2c(n) =

2(1− p(n))

p(n)
.

Then the pgf fn(s) = E [sXi (n)] has the following form

fn(s) = 1− 1− s
1 + c(n)(1− s)

.
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Definitions and notations

Denote by

F (j ,n; s) = fj(fj+1(fj+2(. . . (fn(s)) . . .))).

Then we have

F (j ,n; s) = 1− 1− s
1 + B(j ,n)(1− s)

,

where B(j ,n) =
n∑

k=j

c(k).

In particular

F (n; s) = E [sZn |Z0 = 1] = F (1,n; s) = 1− 1− s
1 + B(n)(1− s)

,

where B(n) =
n∑

k=1

c(k).
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Basic equations

Denote the pgf of Yn by Φ(n; s) = E [sYn |Y0 = 0]. The following
equation holds true

Φ(n; s) =
n∏

j=1

g(F (j ,n; s)) =
n∏

j=1

g
(

1− 1− s
1 + B(j ,n)(1− s)

)
.

For s = 0 we have

Φ(n; 0) =
n∏

j=1

g(F (j ,n; 0)) =
n∏

j=1

g
(

1− 1
1 + B(j ,n)

)
.

These equations are the basic tools in the study of the process
Yn.
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Assumptions for the offspring distributions

For the offspring distribution we assume that for α > 0

p(n) ∼ L(n)

nα
→ 0, n→∞. (2)

Then

σ2
n = 2c(n) ∼ 2

p(n)
∼ nαL1(n)→∞,n→∞. (3)

The process is critical but the variance increases to infinity
with n.
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Assumptions for the immigration

For the immigration we assume either:
The first two moments are finite.

mI := g′(1) <∞, bI := g′′(1) <∞. (4)

or
Infinite mean of the number of immigrants.

g(s) = 1− R(1/(1− s)) where R(x) ∈ RV (−β), (5)

R(x) is non increasing and β is such that 1/(1 + α) < β < 1.
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As usual we consider:

Probability for non-visiting the state zero.

Asymptotic of the moments.
when they are finite

Limiting distributions.

Depending on the immigration component.

Kosto V. Mitov and Edward Omey BPI in Varying Environments



Probability for non-visiting zero

Theorem

Assume that

m(n) = 1, c(n) ∼ nαL1(n),n→∞, α > 0,

and the first and second moments of the number of immigrants
are finite:

mI := g′(1) <∞, bI := g′′(1) <∞.

Then

Pr(Yn > 0) ∼ mI
log n
c(n)

∼ n−αL2(n), n→∞.
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Theorem

Suppose that

m(n) = 1, c(n) ∼ nαL1(n),n→∞, α > 0,

and

g(s) = 1− R(1/(1− s)), where R(x) = x−βL1(x).

R(x) is non increasing and 1/(1 + α) < β < 1.
Then

Pr(Yn > 0) ∼ C(α, β)nR(nc(n)) ∼ C(α, β)n1−(1+α)βL3(n),

where
C(α, β) = (1 + α)β−1B(

1
1 + α

,1− β),

and B(., .) is Euler’s beta function.
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Comment

Under the conditions of the theorem α > (1 + α)β − 1.
Then, in the second case the probability for non-visiting the
state zero decreases to zero more slowly.

Kosto V. Mitov and Edward Omey BPI in Varying Environments



Asymptotic of the moments

Theorem

Assume that

m(n) = 1, c(n) <∞ n = 1,2, . . . ,

and

mI := g′(1) <∞, bI := g′′(1) <∞.

Then

E [Yn] = mIn, n ≥ 1,

Var [Yn] = 2mI

n∑
j=1

B(j ,n) + dIn, n ≥ 1,

where dI = bI + mI −m2
I = Var [In].
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Asymptotic of the moments

Corolary

Under the condition of the Theorem and c(n) ∼ nαL1(n),

Var [Yn] =
2mI

α + 2
n2c(n)(1 + o(1)), n→∞.
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Limit theorems

Theorem

Assume that

m(n) = 1, c(n) ∼ nαL1(n),n→∞, α > 0,

and the first and second moments of the number of immigrants
are finite:

mI := g′(1) <∞, bI := g′′(1) <∞.

lim
n→∞

Pr
(

log Yn − log c(n)

log n
≤ x

∣∣∣∣Yn > 0
)

= x , x ∈ (0,1).
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Limit theorems

Theorem

Suppose that
m(n) = 1, c(n) ∼ nαL1(n),n→∞, α > 0,
g(s) = 1− R(1/(1− s)),

where R(x) = x−βL1(x), R(x) is non increasing,
and 1/(1 + α) < β < 1. Then for λ > 0,

lim
n→∞

1− Φ(n,e−λ/nc(n))

nR(nc(n))
=

∫ 1

0

(
1
λ

+
1

α + 1
(1− xα+1)

)−β
dx .
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By the continuity theorem for Laplace transforms we have:

Corolary
Under the conditions of Theorem we have for every x > 0,

lim
n→∞

Pr
(

Yn

nc(n)
≤ x |Yn > 0

)
= D(x ;α, β),

where D(x ;α, β) has Laplace transform

D̂(λ;α, β) = 1− 1
C(α, β)

∫ 1

0

(
1
λ

+
1

α + 1
(1− xα+1)

)−β
dx ,

and
C(α, β) = (1 + α)β−1B(

1
1 + α

,1− β),
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Tail behaviour of the limit distribution

The distribution function D(x ;α, β) is not explicitly expressed.
What can we say about it?

It is not difficult to see that

1− D̂(λ;α, β)

λ
∼ λβ−1

C(α, β)
, λ ↓ 0.

Then by a Tauberian theorem for Laplace transform we have

1− D(x ;α, β) ∼ x−β

C(α, β)Γ(β)
, x →∞.

So, the limiting distribution has heavy tail with exponent β < 1.
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