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Controlled Branching Process Probability Model

Probability model

Definition (Yanev (1975))

Let {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} and {φn(k) : n, k = 0, 1, . . .} be two
independent families of non negative integer valued random variables which are
defined on the same probability space, (Ω,A,P).

(i) {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} are i.i.d. random variables whose
distribution is denoted by p = {pk}k≥0, pk = P[X01 = k], k ≥ 0.

(ii) For each n = 0, 1, . . ., {φn(k) : k = 0, 1, . . .} are independent stochastic
processes with equal one-dimensional probability distributions, i.e., for each
n, pj(k) = P[φn(k) = j ], j , k ≥ 0.

The stochastic process {Zn}n≥0 defined as:

Z0 = N ≥ 0, Zn+1 =
φn(Zn)∑
i=1

Xni , n = 0, 1,
(∑0

1 = 0
)
,

is known as Controlled Branching Process (CBP) with random control
function.
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Controlled Branching Process Probability Model

Probability model

Examples of CBPs

CBP with determinist control (Sebast’yanov and Zubkov (1974)).

Standard branching process (Bienaymè-Galton-Watson).

Branching process with immigration (Sriram (1994)).

Branching process with immigration at state zero (Bruss and
Slavtchova-Bojkova (1999)).

Branching process with random migration (Yanev and Yanev (1996))

Branching process with bounded emigration (del Puerto and Yanev (2008)).

Branching process with adaptive control (Bercu (1999)).

Branching process with continuous state space (Rahimov and Al-Sabah
(2007)).
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Controlled Branching Process Probability Model

Probability model

Main parameters of the model

p = {pk}k≥0: offspring distribution or reproduction law.

m = E [X01]: offspring mean.

σ2 = Var [X01]: offspring variance.

{pj(k)}k,j≥0: control law.

ε(k) = E [φ0(k)], k = 0, 1, . . .: control mean.

σ2(k) = Var [φ0(k)], k = 0, 1, . . .: control variance.
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Controlled Branching Process Main investigated topics

Main investigated topics

Properties

{Zn}n≥0 is an homogeneous Markov Chain with stationary transition
probabilities.

Duality Extinction-Explosion: P(Zn → 0) + P(Zn →∞) = 1.

Main investigated topics

Extinction Problem:

Sevastyanov and Zubkov (1974).
Zubkov (1974).
Yanev (1975).
González, Molina, and del Puerto (2002, 2005a).

Asymptotic Behaviour. Growth rates:

Bagley (1986).
González, Molina, and del Puerto (2002, 2003, 2005a,b).
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Controlled Branching Process Main investigated topics

Main investigated topics

Main investigated topics: Statistical Inference
Bercu, B. (1999) Weighted estimation and tracking for Bienaymè-Galton-Watson processes with
adaptive control. Statistics & Probability Letters, 42, 415-421.

Dion, J. P. and Essebbar, B. (1995). On the statistics of controlled branching processes. Lecture Notes
in Statistics, 99, 14-21.

Mohan, K. (2000) Estimation of parameters in controlled branching process. Stochastic Modelling and
Applications, 3, 1-15.

M. González, R. Mart́ınez, I. and del Puerto (2004). Nonparametric estimation of the offspring
distribution and the mean for a controlled branching process. Test, 13(2), 465-479.

M. González, R. Mart́ınez, I. and del Puerto (2005). Estimation of the variance for a controlled
branching process. Test, 14(1), 199-213.

T.N. Sriram, A. Bhattacharya, M. González, R. Mart́ınez, and I. del Puerto (2007). Estimation of the
offspring mean in a controlled branching process with a random control function. Stochastic Processes
and their Applications, 117, 928-946.

R. Mart́ınez, I. del Puerto and M. Mota (2009). On asymptotic posterior normality for controlled
branching processes. Statistics, 43, 367-378.

M. González and I. del Puerto (2012). Diffusion Approximation of an Array of Controlled Branching
Processes. Methodology and Computing in Applied Probability, 14, 843-861.

M. González, C. Gutiérrez, R. Mart́ınez, and I. del Puerto (2013). Bayesian inference for controlled
branching processes through MCMC and ABC methodologies. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales. Serie A. Matemáticas, 107(2), 459-473.

González, M., M.C., del Puerto, I. (2015). Maximum likelihood estimation and Expectation -
Maximization algorithm for controlled branching processes. Computational Statistics and Data Analysis,
DOI: 10.1016/j.csda.2015.01.015
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Setting out the problem

The problem

Assumption

The offspring distribution belongs to a parametric family

Fθ = {p(θ) : θ ∈ Θ}, Θ ⊆ R,

that is, p = p(θ0), with θ0 ∈ Θ.

Aim

To obtain a robust estimator of θ0 and, in consequence, of p(θ0),
m(θ0) and σ2(θ0).
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Setting out the problem

The problem

Maximum likelihood estimation in a nonparametric context

Assuming that we can observe the random variables

Z∗n =

Zl(k) =

φl (Zl )∑
i=1

I{Xli=k} : k ≥ 0; l = 0, . . . , n − 1

 ,

it is proved that the maximum likelihood estimator (MLE) of pk , k ≥ 0, m, and
σ2 are:

p̂k =

∑n−1
l=0 Zl(k)∑n−1
l=0 φl(Zl)

, m̂n =

∑n−1
l=0 Zl+1∑n−1

l=0 φl(Zl)
, σ̂2

n =
∞∑
k=0

(k − m̂n)2p̂k .

González, M., M.C., del Puerto, I. (2015). CSDA.
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Setting out the problem

The problem

Maximum likelihood estimation in a parametric context

Assuming that p ∈ FΘ and that we observe Z∗n , one can obtain the maximum
likelihood estimator of θ0 by maximizing the log-likelihood

`(θ |Z∗n ) =
n−1∑
l=0

log

(
φ∗l !∏∞

k=0 Zl(k)!

)
+

n−1∑
l=0

log(pφ∗
l
(Zl)) +

n−1∑
l=0

∞∑
k=0

Zl(k) log(pk(θ)).
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The problem

Maximum likelihood estimation in a parametric context

Assuming that p ∈ FΘ and that we observe Z∗n , one can obtain the maximum
likelihood estimator of θ0 by maximizing the log-likelihood

`(θ |Z∗n ) =
n−1∑
l=0

log

(
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k=0 Zl(k)!

)
+

n−1∑
l=0

log(pφ∗
l
(Zl)) +

n−1∑
l=0
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k=0

Zl(k) log(pk(θ)).

Thus,

θ̂n = arg max
θ∈Θ

n−1∑
l=0

∞∑
k=0

Zl(k) log(pk(θ)) = arg max
θ∈Θ

∞∑
k=0

p̂n,k log(pk(θ))

p̂(θ0)n,k = pk(θ̂n), m̂(θ0)n = m(θ̂n), σ̂(θ0)
2

n = σ(θ̂n)2.
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Setting out the problem

Simulated example

Behaviour of the MLEs against model perturbations

Parametric family: Fθ = {P(5, θ) : θ ∈ (0,∞)},
where P(5, θ) denotes a Poisson distribution with parameter θ truncated at 5.

Mixture model for gross errors: p(θ, α, L) = (1− α)p(θ) + αδL,
where p(θ) is the probability mass function of P(5, 1.2), α = 0.1 and L = 5.

We have simulated the first 25 generations of a CBP
which verifies:

It starts with Z0 = 1 individual.

The distribution of the variables Xij is p(θ, α, L),
for i = 0, 1, . . ., j = 1, . . ..

φn(k) ∼ B(k, q), with q = 0.9, k ≥ 0. 0 5 10 15 20 25
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Setting out the problem

Simulated example
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Minimum disparity estimation

Minimum disparity estimation

Minimum Hellinger distance estimation

Beran, R.J. (1977). Minimum Hellinger distance estimates for parametric
models. Annals of Statistics, 5, 445-463.

Sriram, T.N, Vidyashankar, A.N. (2000). Minimum Hellinger distance
estimation for supercritical Galton-Watson Process. Statistics and Probability
Letters, 50, 331-342.
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Minimum disparity estimation

Minimum disparity estimation

Minimum disparity estimation

Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum
Hellinger distance and related methods. The Annals of Statistics, 22,
1081-1114.

Basu, A., Sarkar, S., Vidyashankar, A. (1997). Minimum negative
exponential disparity estimation in parametric models. Journal of Statistical
Planning and Inference, 58, 349-370.

Park, C., Basu, A. (2004). Minimum disparity estimation: asymptotic
normality and breakdown point results. Bulletin of Informatics and
Cybernetics, 36, 19-33.

Hooker, G., Vidyashankar, A.N. (2014). Bayesian model robustness via
disparities. Test, 23(3), 556-584.
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Minimum disparity estimation

Minimum disparity estimation

Disparity measure

Let Γ be the set of all probability mass functions defined on non-negative integers.
A disparity measure between q ∈ Γ and p(θ) ∈ Fθ is defined by:

ρ(q, θ) =
∞∑
k=0

G (δ(q, θ, k))pk(θ),

with G (·) a three times differentiable and strictly convex function on [−1,∞) with
G (0) = 0 and

δ(q, θ, k) =
qk

pk(θ)
− 1 (Pearson residual).

Our aim:

To determine
arg min

θ∈Θ
ρ(p, θ).
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with G (·) a three times differentiable and strictly convex function on [−1,∞) with
G (0) = 0 and

δ(q, θ, k) =
qk

pk(θ)
− 1 (Pearson residual).

Our aim: the minimum disparity estimator (MDE)

To determine
θ̃ρn(p̃n) = arg min

θ∈Θ
ρ(p̃n, θ).
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Minimum disparity estimation

Minimum disparity estimation

−∂ρ
∂θ

(p̃n, θ) =
∞∑
k=0

p′k(θ)A(δ(p̃n, θ, k)) = 0,

with
A(δ) = (δ + 1)G ′(δ)− G (δ) (RAF).

Examples of disparity measures

Disparity measure MDE Notation G (δ) A(δ)

Likelihood disparity MLDE LD(p̃n, θ) (δ + 1) log(δ + 1) δ

Squared Hellinger distance MHDE HD(p̃n, θ) [(δ + 1)1/2 − 1]2 2[(δ + 1)1/2 − 1]

Negative exponential disparity MNEDE NED(p̃n, θ) exp(−δ)− 1 1− (2 + δ) exp(−δ)
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Minimum disparity estimation

Minimum disparity estimation

Disparity functional

The disparity functional is a functional T ρ : Γ→ Θ satisfying the condition
that for every q ∈ Γ

T ρ(q) = arg min
θ∈Θ

ρ(q, θ)

if T ρ(q) exists.

θ̃ρn(p̃n) = T ρ(p̃n).
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Minimum disparity estimation

Minimum disparity estimation

Problem: the existence of
minθ∈Θρ(q, θ).

Assumptions: ρ(q, ·) is continuous in Θ and Θ is a compact set.

Theorem 1: Existence and uniqueness of a disparity functional

Under the conditions ρ(q, θ) is continuous in θ, Θ is a compact set and the
identifiability of Fθ, the existence and uniqueness the functional T ρ are verified.

Theorem 2: Continuity of a disparity functional

Under the conditions of Theorem 1, if

sup
θ∈Θ
|ρ(qn, θ)− ρ(q, θ)| → 0,

as qn → q in `1 then, T ρ(qn)→ T ρ(q), that is, the continuity of the functional
T ρ holds.

Carmen Minuesa (University of Extremadura) Robust estimation on CBP III WBPA, Badajoz 2015 17 / 35



Minimum disparity estimation

Minimum disparity estimation

Problem: the existence of
minθ∈Θρ(q, θ).

Assumptions: ρ(q, ·) is continuous in Θ and Θ is a compact set.

Theorem 1: Existence and uniqueness of a disparity functional

Under the conditions ρ(q, θ) is continuous in θ, Θ is a compact set and the
identifiability of Fθ, the existence and uniqueness the functional T ρ are verified.

Theorem 2: Continuity of a disparity functional

Under the conditions of Theorem 1, if

sup
θ∈Θ
|ρ(qn, θ)− ρ(q, θ)| → 0,

as qn → q in `1 then, T ρ(qn)→ T ρ(q), that is, the continuity of the functional
T ρ holds.

Carmen Minuesa (University of Extremadura) Robust estimation on CBP III WBPA, Badajoz 2015 17 / 35



Minimum disparity estimation

Minimum disparity estimation

Problem: the existence of
minθ∈Θρ(q, θ).

Assumptions: ρ(q, ·) is continuous in Θ and Θ is a compact set.

Theorem 1: Existence and uniqueness of a disparity functional

Under the conditions ρ(q, θ) is continuous in θ, Θ is a compact set and the
identifiability of Fθ, the existence and uniqueness the functional T ρ are verified.

Theorem 2: Continuity of a disparity functional

Under the conditions of Theorem 1, if

sup
θ∈Θ
|ρ(qn, θ)− ρ(q, θ)| → 0,

as qn → q in `1 then, T ρ(qn)→ T ρ(q), that is, the continuity of the functional
T ρ holds.

Carmen Minuesa (University of Extremadura) Robust estimation on CBP III WBPA, Badajoz 2015 17 / 35



Minimum disparity estimation

Minimum disparity estimation

Problem: the existence of
minθ∈Θρ(q, θ).

Assumptions: ρ(q, ·) is continuous in Θ and Θ is a compact set.

Theorem 1: Existence and uniqueness of a disparity functional

Under the conditions ρ(q, θ) is continuous in θ, Θ is a compact set and the
identifiability of Fθ, the existence and uniqueness the functional T ρ are verified.

Theorem 2: Continuity of a disparity functional

Under the conditions of Theorem 1, if

sup
θ∈Θ
|ρ(qn, θ)− ρ(q, θ)| → 0,

as qn → q in `1 then, T ρ(qn)→ T ρ(q), that is, the continuity of the functional
T ρ holds.

Carmen Minuesa (University of Extremadura) Robust estimation on CBP III WBPA, Badajoz 2015 17 / 35



Minimum disparity estimation

Minimum disparity estimation: sample Z∗n

Theorem 3: Consistency of the MDE

Suppose that T ρ(p) is unique, where p = p(θ0) is the true reproduction law.
Then, under conditions which guarantee p̃n,k is a consistent estimator of pk and
the assumptions of Theorems 1 and 2,

θ̃ρn(p̃n) = T ρ(p̃n)→ T ρ(p) = θ0 a.s.

In particular, for p̂n,

θ̂ρn(p̂n)→ θ0 a.s. on {Zn →∞}.
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Minimum disparity estimation

Minimum disparity estimation: sample Z∗n

Theorem 4: Asymptotic normality of the MDE

Let p = p(θ0) be the true reproduction law. Under certain assumptions,(
n−1∑
l=0

φl(Zl)

)1/2

(θ̃ρn (p̂n)− θ0)→ N
(

0, I (θ0)−1
)
,

with respect to the distribution P[·|Zn →∞], being

I (θ0) =
∞∑
k=0

(
p′k(θ0)

pk(θ0)

)2

pk(θ0).
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Minimum disparity estimation

Minimum disparity estimation: sample Zn

Sample:
Zn = {Z0, . . . ,Zn, φ0(Z0), . . . , φn−1(Zn−1)}

Problem: to determine a nonparametric estimator of pk , k ≥ 0, based on Zn.

`(p|Zn) =

n−1∑
l=0

log (P[φ(zl ) = φ∗l ]) +

n−1∑
l=0

log

 ∑
i1+...+iφ∗

l
=zl+1

pi1 . . . piφ∗
l


Methodology: Expectation-Maximization algorithm.

Nonparametric estimator of p based on Zn: p̂EMn,k .

González, M., M.C., del Puerto, I. (2015). CSDA.

Consistency: θ̂ρn(p̂EMn ) is strongly consistent as p̂EMn,k is for each k ≥ 0.
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Minimum disparity estimation

Minimum disparity estimation: sample Zn

Sample:
Zn = {Z0, . . . ,Zn}

Problem: to determine the MLE of pk , k ≥ 0, based on Zn.

`(p|Zn) =

n−1∑
l=0

log

δ0(zl+1)P[φ(zl ) = 0] +
∞∑
j=1

P[φ(zl ) = j]
∑

i1+...+ij=zl+1

j∏
k=1

pik



Methodology: Expectation-Maximization algorithm.

Nonparametric estimator of p based on Zn: pEMn,k .

González, M., M.C., del Puerto, I. (2015). CSDA.

Consistency: θ̂ρn(pEMn ) is strongly consistent as pEMn,k is for each k ≥ 0.
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Minimum disparity estimation

Minimum disparity estimation

Mixture model for gross error:

p(θ, α, L) = (1− α)p(θ) + αδL.

α-influence curves of T ρ:

L ∈ N0 7→ α−1(T ρ(p(θ, α, L))− θ), α ∈ (0, 1).

Theorem 5: Robustness of a disparity functional

Under conditions of Theorems 1 and 2, for every α ∈ (0, 1), every θ ∈ Θ and if
T ρ(p(θ, α, L)) is unique for all L we have the functional T ρ is robust at p(θ)
against 100α% contamination by gross errors at arbitrary integer L.
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Minimum disparity estimation

Minimum disparity estimation

Asymptotic breakdown point of a disparity functional T ρ at q ∈ Γ:

α∗(T ρ, q) = inf {α ∈ (0, 1) : b(α;T ρ, q) =∞} ,

with
b(α;T ρ, q) = sup {|T ρ((1− α)q + αq)− T ρ(q)| : q ∈ Γ}.

Theorem 6: Asymptotic breakdown point

(i) Under certain conditions on the function G and the contaminant
distributions,

α∗(T ρ, p) ≥ 1

2
.

(ii) Under conditions of Theorems 1 and 2, if %̂ = maxt∈Θ

∑∞
k=0(pk(θ0)pk(t))1/2

and %∗ = limM→∞ sup|t|>M

∑∞
k=0(pk(θ0)pk(t))1/2, then

α∗(T ρ, p) ≥ (%̂− %∗)2

[1 + (%̂− %∗)2]
.
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Simulated examples Example 1

Simulated example 1: sample Z∗n
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Simulated example 1: samples Z∗n , Zn, Zn
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Simulated examples Example 1

Simulated example 1: samples Z∗n , Zn, Zn
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Simulated examples Example 2

Simulated example 2: uncontaminated model

We have simulated the first 50 generations of 100 CBPs verifying:

They start with Z0 = 1 individual.

The distribution of the variables Xij ∼ P(θ0), with θ0 = 4 for i = 0, 1, . . ., j = 1, . . .

φn(k) ∼ P(kλ), with λ = 0.3, n ∈ N, k ≥ 0.
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Fig: Evolution of the mean of the estimates of θ0.
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Simulated examples Example 2

Simulated example 2: under mixture models for gross errors

We have simulated 100 CBPs following the previous model and with offspring
distribution contaminated according to the mixture model for gross error:

L = 0, . . . , 25.

α = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5.
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Simulated examples Example 2

Simulated example 2: under mixture models for gross errors
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Concluding remarks and references Concluding remarks

Concluding remarks

For a CBP with offspring distribution belonging to a parametric family Fθ,
we have deduced the minimum disparity estimator of θ0, p(θ0), m(θ0)
and σ2(θ0) based on the whole family tree and we have established the
consistency and asymptotic normality of the minimum disparity estimator
of θ0.

For a CBP with offspring distribution belonging to a parametric family Fθ,
we have also determined the minimum disparity estimators of the main
parameters of the model considering only the total number of individuals
and progenitors in each generation or only the population sizes.

We have studied robustness against model perturbations and resistance
to outliers of the minimum disparity estimator for a certain family of
disparities. These properties show that the related minimum disparity
estimators are better choices than maximum likelihood estimators.

We have implemented the minimum disparity estimation using statistical
software and programming environment R.
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