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Birth-Death process of Bare Bones

Stochasticity in the adaptive dynamics of evolution: the bare bones
(2011) Klebaner, Sagitov S., Vatutin V., Haccou P., Jagers P.
A continuous time version of the bare bones model is a birth-death
process XN on Z2

+,

Carrying capacity enters via death rates.
The transition rates are as follows:

X → X + (1, 0) at rate aX1;
X → X + (−1, 0) at rate X1{(X1/N) + γ(X2/N)};
X → X + (0, 1) at rate bX2;
X → X + (0,−1) at rate X2{γ(X1/N) + (X2/N)}.



More general processes

XN is a Markov population process on Zd
+ having transition rates

X → X + J at rate NgJ(N−1X ), X ∈ Zd
+, J ∈ J ⊂ Zd

(1)
Denote the density process xN := N−1XN .
Then xN can be described by the equation

xN(t) = xN(0) +

∫ t

0
F (xN(u)) du + mN(t), (2)

where
F (x) :=

∑
J∈J

JgJ(x), x ∈ Red+, (3)

and mN is a vector valued martingale.



Approximation on finite time intervals

Theorem (Kurtz, 1970)

If limN→∞ xN(0) = x0,
then sup0≤t≤T |xN(t)− x(t)| → 0 in distribution,
for any finite T > 0, where x solves corresponding deterministic
equations

ẋ = F (x), x(0) = x0. (4)

In the Bare Bones example

F (x) =

(
x(a− x − γy)
y(b − γx − y)

)
. (5)



The problem of small initial mutant population

If the number of established population is around its equilibrium a
and the number of mutants is fixed (typically 1) then the density
process has its initial condition convergent to (a, 0), a fixed point
of F .
Therefore by the Kurtz’ Theorem xN(t)→ (a, 0) for all finite t.

Since (a, 0) is an unstable fixed point, its approximation on finite
intervals is not informative.



Time of escape
The problem of being near an unstable fixed point is just the same
in systems without noise.

Consider ẋ = g(x) with 0 as unstable fixed point for g , g(0) = 0.
Due to continuous dependence on initial conditions, the
approximation to the solution with x(0) = ε as ε→ 0, on any
finite time interval is 0, x(t)→ 0.

Example:
If g(x) = x then x(t) = εet . Hence if Tε = ln 1/ε, then
x(t + Tε) = et , ẏ(t) = y(t), y(0) = 1.
With change of time t + Tε, the limiting dynamics is the same but
with a different initial condition.
Tε is sharp, cTε does not escape from 0 for c < 1, and ends up at
the stable fixed point for c > 1.

Tε is the time of escape.
We want to find time of escape for our non linear, stochastic
system.



Linear g . Feller diffusion.

X (t) = ε+

∫ t

0
X (s)ds +

√
ε

∫ t

0

√
X (s)dB(s).

X (t) = εZ (t), where

Z (t) = 1 +

∫ t

0
Z (s)ds +

∫ t

0

√
Z (s)dB(s).

W = lim
t→∞

Z (t)e−t︸ ︷︷ ︸
X (ln 1/ε)

.

X (ln 1/ε+ t) = εZ (ln 1/ε+ t) = Z (ln 1/ε+ t)e−t−ln 1/εet →Wet .

Y (t) = W +

∫ t

0
Y (s)ds.



Non-linear g(x) = x(1− x).

ẋ(t) = g(x(t)), x(0) = ε.

Lemma
Let τ εt = −c ln ε+ t. Then as ε→ 0, the time-changed function
x̃t = x(τ εt ) = x(−c ln ε+ t) converges to y(t)

1. if c < 1, y(t)=0

2. if c = 1, y is a solution of the same equation ẏ(t) = g(y)
with y0 = 1

2

3. if c > 1, y(t)=1.



Non-linear g(x) = x(1− x), stochastic.

X (t) = ε+

∫ t

0
g(X (s))ds +

√
ε

∫ t

0

√
X (s)dB(s).

Theorem (nearly proved)

X (ln 1/ε+ t)⇒ Y (t), Y (t) =
W

1 + W
+

∫ t

0
g(Y (s))ds,

where
W = lim

t→∞
Z (t)e−t

and Z (t) has linear drift and driven by the same BM B(t).



Approximations to deterministic Bare Bones

x(0) = a, y(0) = ε

ẋ = (a− x − γy)x ,

ẏ = (b − γx − y)y .

Theorem (Hamza, Kaspi, K.)

Let Tε = inf{t : y(t) = α}. Then there exists
limε→∞ x(Tε + t) = xα(t), that uniquely solves

xα(t) =

(
β
α

)
+

∫ t

0
G(xα(u))du,

where β = z(α) and z(u) solves d.e. z ′(u) = Π(z(u), u), z(0) = a,
with

Π(z , u) =
z(a− z − γu)

u(b − γz − u)



Approximations

The ‘correct’ approximation is given first by a Branching Markov
process, and then by the solution of the deterministic equation.

Branching approximation
Let β = b − γa.
The branching approximation holds in total variation up to a
time τYN,α, chosen so that NY (τYN,α) is approximately N1−α.
It is not accurate for α ≤ 1/3; so we take α = 5/12.
If the branching process is absorbed in 0, then so too, with high
probability, is Y .
If not, then we show that xN(τYN ) is close to x(tN), where
tN = β−1 7

12 ln N, approximately the time when deterministic

solution y reaches N
7
12 .

By linearization near fixed point the time to reach N
7
12 is tN + O(1)

Thus xN closely follows the deterministic path, but with a random
time shift.



Theorem

Theorem (Barbour, Hamza, Kaspi, K.(2015))

The process Z is a linear birth and death process, with per capita
birth and death rates b and γa respectively.
W = limt→∞ Z (t)e−βt . Then except on an event E c

N1 of
asymptotically negligible probability, the paths of NY and of Z can
be coupled so as to be identical until the time min{τZ (0), τZN,5/12},
in which case
τZN,5/12 = τYN,5/12 = β−1{ 7

12 ln N − ln W }+ O(N−7/48).
For any T there exists a constant γ > 0, a constant kT <∞ and
an event ET

N2 such that, on {τYN,5/12 <∞} ∩ EN1 ∩ ET
N2,

sup
0≤t≤ 5

12β
−1 lnN+T

|xN(τYN,5/12 + t)− x(tN + t)| ≤ kTN−γ ,

and limN→∞ P[ET
N2 | {τZN1 <∞} ∩ EN1] = 1.



THANK YOU!


