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Part of Schweinsberg’s result (2003):

Let N € N.

Let X;,,, : = 1,..., N be the offspring numbers in generation
m oOf a “supercritical Galton-Watson genealogy” with constant
population size N.

Thus:



N
Constant population size: > X;,, = N for all m
i=1

Independence between generations:
(X1 .-, XNy are iid for different m

Distribution of (Xqg,..., XN0):

Let & > 1 be the iid offspring numbers of the individuals
1,...,N in generation 0. Choose N of these descendants at
random and remove the other ones.

Let X,0 < &, be the number of the remaining offspring of
individual 2.

m runs through Z.






Assumptions:

— £ >1 a.s. (for convenience)

— P(é>k)~ck ®as k— oo forsomea>2o0r1l<a<?2.

Thus

1 <Ef<oo.



Choose n < N individuals uniformly at random in generation O
and label them from 1 to n.

Q O O 0
@) O O @)
@) O (@) [




The genealogy of these n individuals in generation O:

Fort>0and 1 <1,7 <n set

1 ~eN ]
iff the individuals 7,7 have a common ancestor in the generations
m < —tcy,

where

N for a > 2,
C =
N Ne—l o for1<a< 2.



The genealogy of these n individuals in generation O:

Fort>0and 1 <1,7 <n set

1 ~eN ]
iff the individuals 7,7 have a common ancestor in the generations
m < —tcy,

where
N for a > 2,
CN — 1
N& for 1 <a < 2.
Let I, y be the corresponding partition on {1,...,n}.

(M. N)e>0 is @ process with values in Py, the set of all partitions
of {1,...,n}.



Theorem (Schweinsberg 2003)

Fix n € N.

Then the processes (I1; n);>0 converge in distribution to a limi-
ting process M = (MN¢);>o,

d e

(My,N)i>0  — as N — oo .

Y

For a > 2 the limiting process is a n-Kingman coalescent, and
for 1 < a <2 an-Beta(2 — o, «a)-coalescent.



The evolving Kingman n-coalescent (n =5):
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|
Evolutionary time

Moran’'s model with time —oco < t < oo:
Links between pairs of lines appear at rate 1,
independent between the different pairs.
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The evolving Kingman n-coalescent:

The genealogy of a sample of n = 5 individuals:
Kingman's coalescent at time ¢4
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The evolving Kingman n-coalescent:
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The coalescent tree evolves in time.
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The evolving Lambda-coalescent:

Poisson Point Process on [0,1] x R with intensity measure

A(dzx)

w(dt,dx) = dt - 5
x

and a finite measure A(dz) on [0, 1].
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The rate, at which two specified individuals 7,7 (say i = 1,7 = 2)
are involved in a common coalescent event is

/01 22 Ai‘f) = A((0,1]) < o .
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The evolving Beta(2 — o, o)-coalescent:

Let
A(dz) = cxl (1 — 2)* Ldx

with 0 < o < 2.

a ] 2: Kingman coalescent
o = 1. Bolthausen-Sznitman coalescent
« | O: Star-shaped coalescent.
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Why care about such kind of evolution?

One answer:;
T he diverse areas of the tree are differenly sensitive to time chan-

ges.
They vary at different rates, if the sample of the n individuals is

taken at time t, instead of ¢;.

It is to be expected that the tree changes more quickly around
the leaves and more slowly around the root.
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But what about some other, more global characteristics (of po-
tential biological interest)?

] B |
\\ | \\ -
L I

-

total length total external length
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Here we focus on 1 < o < 2, between Bolthausen-Sznitman and
Kingman case.
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For the n-coalescent let at time —oco0 <t < o0

¢n(t) := total external length

Theorem: (K., Schweinsberg, Wakolbinger, EJP 2014)

Llet l<a<2andc:=(a— 1) («)/(2—a) . Then

(ﬁn(nl_o‘t) — cnl@

: ) J44 | syy-driven MA
natl-a teR

20



For the n-coalescent let at time —oco <t < o0
Cn(t) -
Ln(t) :
Theorem: (K., Schweinsberg, Wakolbinger, EJP 2014)

total external length
total length

Let 1 <a<2and c:=ala—1)N(a) . Then

(En(nl_o‘t) — cnl@
1

If 1 <a<3(1++5) and ¢ =¢/(2 —a), then

) fdd | syy-driven MA
teR

( n(n : ) —cn ) LAd Gther Lévy-driven MA
na—|—1—a teR

(For a« = 1 see Schweinsberg, 2011)
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In entire contrast:
Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt, PTRF 2011)
For the evolving Kingman n-coalescent in Skorohod space

(Ln(t) — 21og n)teR A (pure) jump process .
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In entire contrast:
Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt 2011)
For the evolving Kingman n-coalescent in Skorohod space

(Ln(t) — 21og n)tER A (pure) jump process .

Theorem: (Dahmer, K. 2014)

For the evolving Kingman n-coalescent

( /%@n(%) _2>)t€R f.d-d. cont. gaussian process ,

with covariance function c(s,t) = (1 + [t —s|)2 .
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Note the different time scales:

- the evolutionary scale t
(each pair of lines involved at rate 1 in a coalescence)

- the generation scale %
(each individuum involved at rate 1)
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Note the different time scales:

- the evolutionary scale t
(each pair of lines involved at rate 1 in a coalescence)

- the generation scale %
(each individuum involved at rate 1)

The scale nt~%¢ for the Beta(a, 2 — a)-n-coalescent is generation
scalel
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T he sources and order of noise

order O(né‘H_O‘)

q UHJUWM/ULUJ > source: 'topology’ of the tree

— affects L,, and ¢,

order O(1)

source: waiting times

affects only L,
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T he evolution of the external length in Kingman’s coalescent:
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T he evolution of the external length in Kingman’s coalescent:

P
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memory |
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Cov(ly, bap) = (L+|h)) 2 =
probability that in a critical branching process there is exactly 1
individual after time h
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Let for r > 1
L7 = total length of order r

£l =y, is the total external length.
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Let for r > 1
L7 = total length of order r

£l =y, is the total external length.

Theorem. (Iulia Dahmer, K., AAP 2015)

For s € N

n d
Y — g, 08—
4Iogn( n — M1 n US) —

as n — oo, With

2
pr = E(Ly) = —

r

N (O, Ids)
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1000 realisations of (£}, £2) with n = 100:
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Branch numbers Vo, ..., Vy, and Wo, ..., W,.

-
T, 1o T3 Ty Te = 0
Vo =0 Vs =5
Wy =1 Wg =20
1 - 2w
L= ViTie1-Ty), L;=> Wi(Ti—1-Ty)
=2 1=2
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The case s = 1:

— Z T (Vi1 — Vi) +T1 V2
k=1

_2
v LAY

AV, is easy to analyse for k close to n. However:

The big fluctuations arise at k close to 1.
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The key:

For the (total) internal numbers Uy =1—-Vq,..., U, =n—V,, we
have reversibility:

Theorem: (S. Janson, K. 2011)

d
(Ula---aUn—l) — (Un—la---aUl)-

Theorem: (S. Janson, K. 2011)

n

(bn—2) L N(0,1) .
41ogn
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The representation of the (total) internal numbers
diminishing urn:

— Take urn with blue balls, altogether n balls.

— Remove them stepwise:
Successively remove a random pair of balls
and replace it by one ball.

— If 2 balls are left,
let the number of orange balls among them
and V; the number of blue balls.

35

as



The case s > 2.

Recall

Vih,..., Vo external branch numbers

Whn,...,Ws internal order 2 branch numbers
Note:
Vi, Vi—1,..., Vo is @ Markov chain (inhomogeneous in time).

(Vi We), (Vo1 Wy—1), -+, (Vo,Ws) is a Markov chain, or

Wh,...,Wo is a Markov chain,
given the random environment Vy, ..., V5.
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T he transition probabilities:

PY, (W) =PV =0 W1 = | Vy = v, W), = w)

Pf’w(vaw): (k_g_w) Pf/){w(’U—].,w—]-):ﬂ
| (2) | (5)
Py — 1wy ="ETT0) kg gy = W v W)
| (2) | (%)
P,(If,w(v—Q,w—l—l):@ Piw(v,w_g):@

(2) (5)
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T he transition probabilities:

For k close to 1:

P?iw(vyw) =1- QU —Il; S + O(U—Il;w)

P,f,w(’u 1, w) = — —|— O(U—HU)

P,f,w(v —2w+1) = O(U_Zw)

quf’,w(v —1,w—1) =of

w(vw—l)_—_l_o(

quf’w(v, w—2) = o

U-II;w)

338

v—II;w)

v+w
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Idea of proof:
Reversing time is no longer practical for s > 2.

We couple the Markov chain

(VTM Wn), ) (V27 WQ)

with two independent urns, i.e. with

(Vna ‘771)7 ety (V27 ‘72) ’

where (V,,...,V5) is an independent copy of (Vj,..

Now the urns can be reversed.

., V2).
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