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Part of Schweinsberg’s result (2003):

Let N ∈ N.

Let Xim, i = 1, . . . , N be the offspring numbers in generation

m of a “supercritical Galton-Watson genealogy” with constant

population size N .

Thus:
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− Constant population size:
N∑
i=1

Xim = N for all m

− Independence between generations:
(X1m, . . . , XNm) are iid for different m

− Distribution of (X10, . . . , XN0):
Let ξi ≥ 1 be the iid offspring numbers of the individuals
1, . . . , N in generation 0. Choose N of these descendants at
random and remove the other ones.
Let Xi0 ≤ ξi be the number of the remaining offspring of
individual i.

− m runs through Z.
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. . .. . .

N = 5
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Assumptions:

− ξ ≥ 1 a.s. (for convenience)

− P(ξ > k) ∼ ck−α as k →∞ for some α > 2 or 1 < α < 2.

Thus

1 < Eξ <∞ .
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Choose n ≤ N individuals uniformly at random in generation 0

and label them from 1 to n.

. . . . . .

n = 3, N = 5
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The genealogy of these n individuals in generation 0:

For t ≥ 0 and 1 ≤ i, j ≤ n set

i ∼t,N j
iff the individuals i, j have a common ancestor in the generations
m ≤ −tcN ,

where

cN =

N for α > 2,

Nα−1 for 1 < α < 2.

Let Πt,N be the corresponding partition on {1, . . . , n}.

(Πt,N)t≥0 is a process with values in Pn, the set of all partitions
of {1, . . . , n}.
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Theorem (Schweinsberg 2003)

Fix n ∈ N.

Then the processes (Πt,N)t≥0 converge in distribution to a limi-

ting process Πα = (Πα
t )t≥0,

(Πt,N)t≥0
d→ Πα , as N →∞ .

For α > 2 the limiting process is a n-Kingman coalescent, and

for 1 < α < 2 a n-Beta(2− α, α)-coalescent.
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The evolving Kingman n-coalescent (n = 5):

Evolutionary time

Moran’s model with time −∞ < t <∞:

Links between pairs of lines appear at rate 1,

independent between the different pairs.
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The evolving Kingman n-coalescent: (N = 5):

t1

The genealogy of a sample of n = 5 individuals:

Kingman’s coalescent at time t1
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The evolving Kingman n-coalescent: (n = 5):

t1 t2

The coalescent tree evolves in time.
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The evolving Lambda-coalescent:

Poisson Point Process on [0,1]× R with intensity measure

µ(dt, dx) = dt ·
Λ(dx)

x2

and a finite measure Λ(dx) on [0,1].
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The rate, at which two specified individuals i, j (say i = 1, j = 2)

are involved in a common coalescent event is

∫ 1

0
x2 Λ(dx)

x2
= Λ((0,1]) <∞ .
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The evolving Beta(2− α, α)-coalescent:

Let

Λ(dx) = cx1−α(1− x)α−1 dx

with 0 < α < 2.

α ↑ 2: Kingman coalescent

α = 1: Bolthausen-Sznitman coalescent

α ↓ 0: Star-shaped coalescent.
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Why care about such kind of evolution?

One answer:

The diverse areas of the tree are differenly sensitive to time chan-

ges.

They vary at different rates, if the sample of the n individuals is

taken at time t2 instead of t1.

It is to be expected that the tree changes more quickly around

the leaves and more slowly around the root.
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But what about some other, more global characteristics (of po-

tential biological interest)?

Evolving total length total external length
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α = 2 α = 1.5 α = 1 α = 0.5

n = 50
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Here we focus on 1 ≤ α ≤ 2, between Bolthausen-Sznitman and

Kingman case.
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For the n-coalescent let at time −∞ < t <∞

`n(t) := total external length

Ln(t) := total length

Theorem: (K., Schweinsberg, Wakolbinger, EJP 2014)

Let 1 < α < 2 and c := (α− 1)Γ(α)/(2− α) . Then(
`n(n1−αt)− cn2−α

n
1
α+1−α

)
t∈R

f.d.d.−→ Lévy-driven MA

If 1 < α < 1
2(1 +

√
5) and c′ = αc, then(Ln(n1−αt)− c′n2−α

n
1
α+1−α

)
t∈R

f.d.d.−→ Lévy-driven MA

(For α = 1 see Schweinsberg, 2011)

20



For the n-coalescent let at time −∞ < t <∞

`n(t) := total external length

Ln(t) := total length

Theorem: (K., Schweinsberg, Wakolbinger, EJP 2014)

Let 1 < α < 2 and c := α(α− 1)Γ(α) . Then(
`n(n1−αt)− cn2−α

n
1
α+1−α

)
t∈R
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(For α = 1 see Schweinsberg, 2011)

21



In entire contrast:

Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt, PTRF 2011)

For the evolving Kingman n-coalescent in Skorohod space(
Ln(t)− 2 logn

)
t∈R

d→ (pure) jump process .

Theorem: (Dahmer, K., arXiv 2014)

For the evolving Kingman n-coalescent(√
n

4 logn

(
`n( tn)− 2

))
t∈R

f.d.d.−→ cont. gaussian process ,

with covariance function c(s, t) = (1 + |t− s|)−2 .

22



In entire contrast:

Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt 2011)

For the evolving Kingman n-coalescent in Skorohod space(
Ln(t)− 2 logn

)
t∈R

d→ (pure) jump process .

Theorem: (Dahmer, K. 2014)

For the evolving Kingman n-coalescent(√
n

4 logn

(
`n( tn)− 2

))
t∈R

f.d.d.−→ cont. gaussian process ,

with covariance function c(s, t) = (1 + |t− s|)−2 .

23



Note the different time scales:

- the evolutionary scale t

- (each pair of lines involved at rate 1 in a coalescence)

- the generation scale t
n

- (each individuum involved at rate 1)

The scale n1−αt for the Beta(α,2−α)-n-coalescent is generation

scale!
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The sources and order of noise

order O
(
n

1
α+1−α)

source: ’topology’ of the tree

affects Ln and `n

order O(1)

source: waiting times

affects only Ln
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The evolution of the external length in Kingman’s coalescent:

...

memory

Cov(`t, `t+h) = (1 + |h|)−2 =

probability that in a critical branching process there is exactly 1

individual after time h
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Let for r ≥ 1

Lrn = total length of order r

L1
n = `n is the total external length.

Theorem. (Iulia Dahmer, K., AAP 2015)

For s ∈ N √
n

4 logn

(
L1
n − µ1, . . . ,Lsn − µs)

d→ N (0, Ids)

as n→∞, with

µr = E(Lrn) =
2

r
.
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1000 realisations of (L1
n,L2

n) with n = 100:

A

B
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Branch numbers V2, . . . , Vn and W2, . . . ,Wn.

V5 = 5V2 = 0

W5 = 0W2 = 1

T1 T2 T3 T4 T5 = 0

L1
n =

n∑
i=2

Vi(Ti−1 − Ti) , L2
n =

n∑
i=2

Wi(Ti−1 − Ti)
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The case s = 1:

L1
n =

n∑
i=2

Vi(Ti−1 − Ti)

=
n−1∑
k=1

Tk(Vk+1 − Vk) + T1V2

≈
n−1∑
k=1

2

k
∆Vk

∆Vk is easy to analyse for k close to n. However:

The big fluctuations arise at k close to 1.
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The key:

For the (total) internal numbers U1 = 1− V1, . . . , Un = n− Vn we

have reversibility:

Theorem: (S. Janson, K. 2011)

(U1, . . . , Un−1)
d
= (Un−1, . . . , U1) .

Theorem: (S. Janson, K. 2011)

√
n

4 logn
(`n − 2)

d→ N (0,1) .
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The representation of the (total) internal numbers U1, . . . , Un as

diminishing urn:

– Take urn with blue balls, altogether n balls.

– Remove them stepwise:

– Successively remove a random pair of balls

– and replace it by one orange ball.

– If i balls are left,

– let Ui the number of orange balls among them

– and Vi the number of blue balls.
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The case s ≥ 2.

Recall

Vn, . . . , V2 external branch numbers

Wn, . . . ,W2 internal order 2 branch numbers

...

Note:

Vn, Vn−1, . . . , V2 is a Markov chain (inhomogeneous in time).

(Vn,Wn), (Vn−1,Wn−1), · · · , (V2,W2) is a Markov chain, or

Wn, . . . ,W2 is a Markov chain,
given the random environment Vn, . . . , V2.
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The transition probabilities:

P kv,w(v′, w′) = P(Vk−1 = v′,Wk−1 = w′ | Vk = v,Wk = w)

P kv,w(v, w) =

(
k−v−w

2

)
(
k
2

) P kv,w(v − 1, w − 1) =
vw(
k
2

)

P kv,w(v − 1, w) =
v(k − v − w)(

k
2

) P kv,w(v, w − 1) =
w(k − v − w)(

k
2

)

P kv,w(v − 2, w + 1) =

(
v
2

)
(
k
2

) P kv,w(v, w − 2) =

(
w
2

)
(
k
2

)
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The transition probabilities:

For k close to 1:

P kv,w(v, w) = 1− 2
v + w

k
+ o(v+w

k ) P kv,w(v − 1, w − 1) = o(v+w
k )

P kv,w(v − 1, w) =
2v

k
+ o(v+w

k ) P kv,w(v, w − 1) =
2w

k
+ o(v+w

k )

P kv,w(v − 2, w + 1) = o(v+w
k ) P kv,w(v, w − 2) = o(v+w

k )
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Idea of proof:

Reversing time is no longer practical for s ≥ 2.

We couple the Markov chain

(Vn,Wn), . . . , (V2,W2)

with two independent urns, i.e. with

(Vn, Ṽn), . . . , (V2, Ṽ2) ,

where (Ṽn, . . . , Ṽ2) is an independent copy of (Vn, . . . , V2).

Now the urns can be reversed.
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