On critical branching processes with immigration in varying environment

Márton Ispány

Faculty of Informatics, University of Debrecen Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences Hungary

III Workshop on Branching Processes and their Applications Badajoz, Spain April 7-10, 2015

DQC

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- Sequence of branching processes with immigration (BPI)
- BPI in varying environment (BPIVE)
- Asymptotic in the mean
- Criticality and classification
- Limit theorem: strictly positive offspring variance
- Deterministic and fluctuation limit theorems: vanishing offspring variance
- Conclusions and future works

Session XI

SQC

★ E ► ★ E ►

Sequence of branching processes with immigration Galton–Watson branching processes with immigration (BPI)

$$X_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k,j}^{(n)} + \varepsilon_k^{(n)}, \qquad k, n \in \mathbb{N}, \qquad X_0^{(n)} = 0,$$

where, for each $n \in \mathbb{N}$, both the offsprings $\{\xi_{k,j}^{(n)} : k, j \in \mathbb{N}\}$ and the immigrations $\{\varepsilon_k^{(n)} : k \in \mathbb{N}\}\$ are identically distributed, and they are independent, nonnegative, integer valued random variables.

Parameters:
$$m_n := \mathsf{E}\xi_{1,1}^{(n)}, \quad \lambda_n := \mathsf{E}\varepsilon_1^{(n)},$$

 $\sigma_n^2 := \mathsf{Var}\xi_{1,1}^{(n)}, \quad b_n^2 := \mathsf{Var}\varepsilon_1^{(n)}.$

Classification:
$$m_n < 1$$
 $m_n = 1$ $m_n > 1$
subcritical critical supercritical

Asymptotic result I: strictly positive offspring variance Sriram AS (1994)

Suppose that $m_n = 1 + \alpha n^{-1} + o(n^{-1})$ with $\alpha \in \mathbb{R}$, and $\sigma_n^2 \to \sigma^2 > 0$ as $n \to \infty$. Let $\mathcal{X}_t^n := \mathcal{X}_{|nt|}^{(n)}$. Then

$$n^{-1}\mathcal{X}^n \xrightarrow{\mathcal{L}} \mathcal{X}$$
 as $n \to \infty$,

where $\mathcal{X} := (\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is a (nonnegative) diffusion process with initial value $\mathcal{X}_0 = 0$ and with generator

$$Lf(x) = (\lambda + \alpha x)f'(x) + \frac{1}{2}\sigma^2 x f''(x), \qquad f \in C^{\infty}_{c}(\mathbb{R}_+).$$

This process can also be characterized as the unique solution to the SDE

$$\mathsf{d}\mathcal{X}_t = (\lambda + \alpha \mathcal{X}_t) \, \mathsf{d}t + \sigma \sqrt{(\mathcal{X}_t)_+} \, \mathsf{d}\mathcal{W}_t, \quad t \in \mathbb{R}_+, \quad \mathcal{X}_0 = \mathbf{0}.$$

This is a square-root process or a CBI process, related to the squared Bessel process and Cox-Ingersoll-Ross model in the financial mathematics.

WBA2015

DQC

Asymptotic result II: vanishing offspring variance I, Pap, van Zuijlen JAP (2005)

Suppose that $m_n = 1 + \alpha n^{-1} + o(n^{-1})$ with $\alpha \in \mathbb{R}$, and $\sigma_n^2 = \beta n^{-1} + o(n^{-1})$ as $n \to \infty$. Let $\mathcal{M}_t^n := \sum_{k=1}^{\lfloor nt \rfloor} \mathcal{M}_k^n$. Then, we have fluctuation limit theorem

$$n^{-1/2}(\mathcal{X}^n - \mathsf{E}\mathcal{X}^n, \mathcal{M}^n) \xrightarrow{\mathcal{L}} (\mathcal{X}, \mathcal{M}) \quad \text{as} \quad n \to \infty,$$

where $\mathcal{M} := (\mathcal{M}_t)_{t \in \mathbb{R}_+}$ is a time-changed Wiener process, i.e., $\mathcal{M}_t = W_{\mathcal{T}(t)}, t \in \mathbb{R}_+$, with

$$T(t) := b^2 t + \beta \lambda \int_0^t \int_0^s e^{\alpha u} du ds,$$

 $(W_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process; and

$$\mathcal{X}_t := \int_0^t \mathrm{e}^{lpha(t-s)} \mathrm{d}\mathcal{M}_s$$

is an Ornstein–Uhlenbeck process driven by $_{\Box}\mathcal{M}_{*}$

Session XI

BPI in varying environment (BPIVE)

Goal: To study the nearly criticality in one model! Galton–Watson branching process with immigration

$$X_k = \sum_{j=1}^{X_{k-1}} \xi_{k,j} + \varepsilon_k, \qquad k \in \mathbb{N}, \qquad X_0 = 0,$$

where the offsprings $\{\xi_{k,j} : k, j \in \mathbb{N}\}\$ are identically distributed for each $k \in \mathbb{N}$, respectively, and they and the immigrations $\{\varepsilon_k : k \in \mathbb{N}\}\$ are independent, nonnegative, integer valued random variables. The offspring and the immigration distributions may vary from generation to generation.

The process $(X_k)_{k \in \mathbb{Z}_+}$ is called branching process with immigration in varying environment (BPIVE) or time varying BPI.

Parameters:
$$m_k := \mathsf{E}_{\xi_{k,1}}, \lambda_k := \mathsf{E}_{\varepsilon_k}, \sigma_k^2 := \mathsf{Var}_{\xi_{k,1}}, b_k^2 := \mathsf{Var}_{\varepsilon_k}.$$

SQC

Applications

General inhomogeneous branching processes:

- Domain of peer-to-peer file sharing networks, Adar and Huberman (2000), Zhao et al. (2005)
- Modeling biodiversity or macroevolution, Aldous and Popovic (2005), Haccou and Iwasa (1996)
- Epidemic–type Aftershock Sequence (ETAS) in seismology, Farrington et al. (2003)

Heterogeneous INAR models (Bernoulli offsprings):

- Understanding and predicting consumers' buying behaviour, Böckenholt (1999)
- Modeling the premium in bonus-malus scheme of car insurance, Gourieroux and Jasiak (2004)

Session XI

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Asymptotic for the mean

We have the following deterministic time varying linear recursion for the mean

$$\mathsf{E}(X_k) = m_k \mathsf{E}(X_{k-1}) + \lambda_k, \qquad k \in \mathbb{N},$$

where the sequence $(m_k)_{k \in \mathbb{N}}$ determines the asymptotic behaviour of the process.

Define the bottom and top Lyapunov exponents as

$$\sup_{n} n^{-1} \inf_{k} r(n,k) =: \gamma_b \leq \gamma_t := \inf_{n} n^{-1} \sup_{k} r(n,k),$$

where the partial growing rate function is defined as

$$r(n,k) := \sum_{j=k}^{k+n-1} \log m_j$$
Classification: $\gamma_t < 0$ $\gamma_b \le 0 \le \gamma_t$ $\gamma_b > 0$
subcritical ??? supercritical

The supercritical case was studied by Goettge (1976), Cohn and Hering (1983), Jagers and Nerman (1985), D'Souza and Biggins (1992, 1993), D'Souza (1994).

Sac

Asymptotic for nearly critical recursion

Notation: $\lambda_k \rightsquigarrow \lambda$ stands for the Cesaro convergence $n^{-1} \sum_{k=1}^n \lambda_k \rightarrow \lambda$ as $n \rightarrow \infty$.

For a deterministic time varying linear recursion

$$x_k = m_k x_{k-1} + \lambda_k, \qquad k \in \mathbb{N}, \qquad x_0 = 0,$$

where

- $m_k = 1 + \alpha k^{-1} + \delta_k$ for some $\alpha \in \mathbb{R}$ and $\sum_{k=1}^{\infty} |\delta_k| < \infty$;
- ② $\lambda_k \rightsquigarrow \lambda$ as $k \to \infty$ for some $\lambda \ge 0$, where $(\lambda_k)_{k \in \mathbb{Z}_+}$ is a non-negative sequence,

we have

- $n^{-1}x_n \rightarrow \lambda(1-\alpha)^{-1}$ if $\alpha < 1$, i.e. $EX_n = O(n)$;
- ($n \ln n$)⁻¹ $x_n \rightarrow \lambda$ if $\alpha = 1$, i.e. $EX_n = O(n \ln n)$;

3 $n^{-\alpha}x_n \to \kappa$ if $\alpha > 1$, i.e. $EX_n = O(n^{\alpha})$, where $\kappa > 0$ is a constant,

as $n \to \infty$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ ● ● ● ●

Proof of the asymptotic

Representation for the unique solution, see Elaydi (1.2.4),

$$x_k = \sum_{j=1}^k \prod_{i=j+1}^k m_i \lambda_j$$

Method of the proof: perturbation argument. Introduce the new sequence $y_k := k^{-\alpha} x_k$, $k \in \mathbb{N}$. Then, we have

$$\mathbf{y}_{k} = (\mathbf{1} + \widetilde{\delta}_{k})\mathbf{y}_{k-1} + \mathbf{k}^{-\alpha}\lambda_{k},$$

where $\sum_{k=1}^{\infty} |\tilde{\delta}_k| < \infty$. This recursion is a small perturbation of the recursion

$$z_k = z_{k-1} + k^{-\alpha} \lambda_k.$$

Hence, their asymptotic behaviors are similar. Thus, we have

$$x_n \approx n^{\alpha} \sum_{k=1}^n k^{-\alpha} \lambda_k$$
Márton Ispány Critical BPI in varying environment Session XI

Proof of the asymptotic

In case of α < 1, by Toeplitz theorem, we have

$$n^{-1}x_n \approx n^{\alpha-1}\sum_{k=1}^n k^{-\alpha}\lambda_k \to \frac{\lambda}{1-\alpha}$$

since

$$n^{\alpha-1}\sum_{k=1}^{n}k^{-lpha}\approx\int_{0}^{1}s^{-lpha}ds=(1-lpha)^{-1}$$

DQC

★ Ξ → ★ Ξ → ...

< 🗇 🕨

Second order linear difference equations I.

An inhomogeneous first order d.e. can be transformed to a homogeneous second order d.e. Suppose that

$$m_k = 1 + \alpha k^{-1} + \beta k^{-2}, \qquad \lambda_k = \lambda + \gamma k^{-1}.$$

Then

$$x_k + a(k)x_{k-1} + b(k)x_{k-2} = 0, \qquad k = 2, 3, \dots,$$

where

$$a(k) \approx a_0 + a_1 k^{-1} + a_2 k^{-2}, \qquad b(k) \approx b_0 + b_1 k^{-1} + b_2 k^{-2}$$

with $a_0 = -2$, $a_1 = -\alpha$, $a_2 = \gamma - \beta$ and $b_0 = 1$, $b_1 = \alpha$, $b_2 = \alpha + \beta - \gamma$. Asymptotic theory: Wong and Li (1992), goes back to Birkhoff ('30).

SQR

・ 同 ト ・ ヨ ト ・ 日 ト

Second order linear difference equations II.

Characteristic polynomial:

$$\varrho^2 + a_0 \varrho + b_0 \implies \varrho^2 - 2\varrho + 1 = 0 \implies \varrho_{1,2} = 1$$

The common value is a root of the auxiliary equation

$$a_1 \varrho + b_1 = 0 \implies -\alpha \varrho + \alpha = 0$$

Indicial polynomial:

$$\kappa(\kappa-1)\varrho^2 + (a_1\kappa+a_2) + b_2 \implies \kappa^2 - (\alpha+1)\kappa + \alpha = 0$$

Roots: $\kappa_1 = 1$ and $\kappa_2 = \alpha$. Two linearly independent asymptotic solutions if $\alpha \neq 1$ with

$$x_n^{(i)} pprox \varrho^n n^{\kappa_i} \qquad i=1,2$$

If $\alpha = 1$ then we have an extra log *n* factor.

SQC

Criticality and classification

A BPIVE is called asymptotically critical if $m_n \rightarrow 1$ as $n \rightarrow \infty$. More precisely, if the parametrization

$$m_k = 1 + \alpha k^{-1} + \delta_k, \qquad \alpha \in \mathbb{R}, \qquad \sum_{k=1}^{\infty} |\delta_k| < \infty$$

 \sim

holds then BPIVE is called nearly critical and it has criticality index α . In this case, $\gamma_b = \gamma_t = 0$.

Classification (regimes) for nearly critical TVBPI:

 $\alpha < 1$ $\alpha = 1$ $\alpha > 1$ nearly proper logarithmically polinomially critical

In the sequel, we investigate proper nearly critical BPIVE. If $\alpha = 0$ then a BPIVE is called strongly critical.

Limit theorem: Assumptions I (2015)

Suppose that

(i)
$$m_n = 1 + \alpha n^{-1} + \delta_n$$
 with $\alpha < 1$ and $\sum_{n=1}^{\infty} |\delta_n| < \infty$;
(ii) $\lambda_n \rightsquigarrow \lambda \ge 0$ as $n \to \infty$;

 \sim

(iii)
$$\sigma_n^2 \rightsquigarrow \sigma^2 \ge 0$$
 as $n \to \infty$;

(iv)
$$n^{-1}b_n^2 \rightsquigarrow 0 \text{ as } n \to \infty;$$

moreover the following Lindeberg conditions hold

(L1)
$$\frac{1}{n} \sum_{k=1}^{n} \mathsf{E}\left(|\xi_{k,1} - m_{k}|^{2} \mathbb{1}_{\{|\xi_{k,1} - m_{k}| > \theta n\}}\right) \to 0 \text{ for all } \theta > 0,$$

(L2)
$$\frac{1}{n^{2}} \sum_{k=1}^{n} \mathsf{E}\left(|\varepsilon_{k} - \lambda_{k}|^{2} \mathbb{1}_{\{|\varepsilon_{k} - \lambda_{k}| > \theta n\}}\right) \to 0 \text{ for all } \theta > 0$$

as $n \to \infty$.

DQC

★ Ξ → ★ Ξ → ...

Limit theorem: Result | (2015)

Let $X_t^n := X_{\lfloor nt \rfloor}$. Then, weakly in the Skorokhod space $D(\mathbb{R}_+, \mathbb{R})$,

$$n^{-1}\mathcal{X}^n \xrightarrow{\mathcal{L}} \mathcal{X}$$
 as $n \to \infty$,

where $(\mathcal{X}_t)_{t\in\mathbb{R}_+}$ satisfies the SDE

$$\mathbf{d}\mathcal{X}_t = (\lambda + \alpha t^{-1}\mathcal{X}_t) \, \mathbf{d}t + \sigma \sqrt{\mathcal{X}_t} \mathbf{d}\mathcal{W}_t, \qquad t > \mathbf{0},$$

where $(W_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process, with initial condition $\mathcal{X}_0 = 0$. Formal SDE: the drift $\beta(t, x) := (\lambda + \alpha t^{-1}x)$ is not Lipschitz and it is not defined at t = 0. Solution: take the process $\mathcal{Y}_t := t^{-\alpha} \mathcal{X}_t$ and apply the Ito's formula (formally)

$$\mathrm{d}\mathcal{Y}_t = \lambda t^{-\alpha} \, \mathrm{d}t + \sigma \sqrt{t^{-\alpha} \mathcal{Y}_t} \mathrm{d}\mathcal{W}_t, \qquad t > \mathbf{0},$$

200

Associated martingale differences

Let \mathcal{F}_k denote the σ -algebra generated by X_0, X_1, \ldots, X_k . We have the conditional expectation

$$\mathsf{E}(X_k \mid \mathcal{F}_{k-1}) = m_k X_{k-1} + \lambda_k. \quad k \in \mathbb{N}.$$

Clearly,

$$M_k := X_k - \mathsf{E}(X_k \mid \mathcal{F}_{k-1}) = X_k - m_k X_{k-1} - \lambda_k$$

defines a martingale difference sequence with respect to the filtration $(\mathcal{F}_k)_{k \in \mathbb{Z}_+}$. On the other hand,

$$M_k := \sum_{j=1}^{X_{k-1}} (\xi_{k,j} - m_k) + \varepsilon_k - \lambda_k$$

Thus, we have the heteroscedastic property:

$$\mathsf{E}(M_k^2 \mid \mathcal{F}_{k-1}) = \sigma_k^2 X_{k-1} + b_k^2$$

500

(四) (日) (日) 日

Heuristic for the limit theorem I.

For all $k \in \mathbb{N}$, we have

$$X_k = m_k X_{k-1} + \lambda_k + M_k = X_{k-1} + \lambda_k + \alpha \frac{X_{k-1}}{k} + \delta_k X_{k-1} + M_k$$

Let 0 < s < t. Then, by iteration,

where

$$W_{n,k} := \frac{1}{\sqrt{nX_{k-1}}} \sum_{j=1}^{X_{k-1}} \frac{\xi_{k,j} - m_k}{\sigma_k} \approx \mathcal{N}(1, n^{-1})$$

★ E ► ★ E ►

Heuristic for the limit theorem II.

The blue part can be approximated by stochastic integral equation

$$\mathcal{X}_{t} = \mathcal{X}_{s} + \int_{s}^{t} \left(\lambda + \alpha \frac{\mathcal{X}_{u}}{u}\right) du + \int_{s}^{t} \sigma \sqrt{\mathcal{X}_{u}} d\mathcal{W}_{u}$$

On the other hand, the red part is vanishing in probability since

$$\frac{1}{n}\sum_{k=1}^{n}|\delta_{k}|\mathsf{E}(X_{k-1})\leq \frac{C}{n}\sum_{k=1}^{n}|\delta_{k}|k\rightarrow 0$$

by Kronecker lemma and, by assumption (iv),

$$\operatorname{Var}\left(\frac{1}{n}\sum_{k=1}^{n}(\varepsilon_{k}-\lambda)\right)=\frac{1}{n^{2}}\sum_{k=1}^{n}b_{k}^{2}\to0$$

< ⊒ >

Weak convergence to a diffusion process I.

For each $n \in \mathbb{N}$, let $(U_k^n)_{k \in \mathbb{N}}$ be a sequence of \mathbb{R}^d -valued adapted random variables w.r.t. a filtration $(\mathcal{F}_k^n)_{k \in \mathbb{Z}_+}$. Introduce the random step functions:

$$\mathcal{U}_t^n := \sum_{k=1}^{\lfloor nt \rfloor} U_k^n, \qquad t \in \mathbb{R}_+, \quad n \in \mathbb{N}.$$

Let $(\mathcal{U}_t)_{t \in \mathbb{R}_+}$ be a *d*-dimensional diffusion process

$$\mathsf{d}\mathcal{U}_t = \beta(t,\mathcal{U}_t)\,\mathsf{d}t + \gamma(t,\mathcal{U}_t)\,\mathsf{d}\mathcal{W}_t, \qquad t \in \mathbb{R}_+,$$

where $\beta : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ and $\gamma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times r}$ are continuous functions and $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is an *r*-dimensional standard Wiener process.

Assume that the SDE has a unique weak solution with $\mathcal{U}_0 = x_0$ for all $x_0 \in \mathbb{R}^d$. Let $(\mathcal{U}_t)_{t \in \mathbb{R}_+}$ be a solution with $\mathcal{U}_0 = 0$.

Session XI

Weak convergence to a diffusion process II. I & Pap, (2010)

Suppose that, for each T > 0,

Uniform convergence on compacts in probability (ucp)

$$\sup_{t\in[0,T]} \left\| \sum_{k=1}^{\lfloor nt \rfloor} \mathsf{E} \left(U_k^n \, \big| \, \mathcal{F}_{k-1}^n \right) - \int_0^t \beta(s, \mathcal{U}_s^n) \, \mathrm{d}s \right\| \stackrel{\mathsf{P}}{\longrightarrow} 0,$$
$$\sup_{t\in[0,T]} \left\| \sum_{k=1}^{\lfloor nt \rfloor} \mathsf{E} \left(U_k^n (\mathcal{U}_k^n)^\top \, \big| \, \mathcal{F}_{k-1}^n \right) - \int_0^t \gamma(s, \mathcal{U}_s^n) \gamma(s, \mathcal{U}_s^n)^\top \, \mathrm{d}s \right\| \stackrel{\mathsf{P}}{\longrightarrow} 0,$$

and the conditional Lindeberg condition

$$\sum_{k=1}^{\lfloor nT \rfloor} \mathsf{E} \left(\| U_k^n \|^2 \mathbb{1}_{\{ \| U_k^n \| > \theta \}} \, \big| \, \mathcal{F}_{k-1}^n \right) \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{for all } \theta > 0.$$

as

Then

 $\rightarrow 11$

 $n \to \infty$

nan

Sketch for the proof of the limit theorem

Introduce the new process $Y_k := k^{-\alpha}X_k$, $k \in \mathbb{N}$, $Y_0 := 0$ and define

$$U_k^n := n^{\alpha-1}(Y_k - Y_{k-1}), \qquad k, n \in \mathbb{N}.$$

Then

$$\mathcal{U}_t^n := \sum_{k=1}^{\lfloor nt \rfloor} U_k^n = n^{\alpha - 1} Y_{\lfloor nt \rfloor}$$

We prove, by general limit theorem, that weakly in the Skorokhod space $D(\mathbb{R}_+, \mathbb{R})$

$$n^{lpha-1} \mathbf{Y}_{\lfloor nt
floor} = \mathcal{U}_t^n \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{U}_t := \mathcal{Y}_t \qquad ext{as} \qquad n o \infty$$

Dar

(雪) (ヨ) (ヨ)

Sketch for the proof of the limit theorem

This implies, for $0 \le t_1 < t_2 < ... < t_m$,

$$n^{\alpha-1}\left(Y_{\lfloor nt_1 \rfloor}, \ldots, Y_{\lfloor nt_m \rfloor}\right) \stackrel{\mathcal{L}}{\longrightarrow} (\mathcal{Y}_{t_1}, \ldots, \mathcal{Y}_{t_m})$$

Hence

$$n^{-1}\left(X_{\lfloor nt_1 \rfloor}, \ldots, X_{\lfloor nt_m \rfloor}\right) \stackrel{\mathcal{L}}{\longrightarrow} \left(\mathcal{X}_{t_1}, \ldots, \mathcal{X}_{t_m}\right)$$

shows the convergence of finite dimensional distributions. Then, we prove tigthness by checking the conditional Lindeberg condition.

Sar

Session XI

Deterministic limit theorem I (2015)

Suppose that

•
$$m_n = 1 + \alpha n^{-1} + \delta_n$$
 with $\alpha < 1$ and $\sum_{n=1}^{\infty} |\delta_n| < \infty$;

2
$$\lambda_n \rightsquigarrow \lambda \ge 0$$
 as $n \to \infty$;
3 $\sigma_n^2 \rightsquigarrow 0$, as $n \to \infty$;
4 $n^{-1}b_n^2 \rightsquigarrow 0$ as $n \to \infty$.

Then

$$n^{-1}\mathcal{X}^n \xrightarrow{\mathcal{L}} \mu_{\mathcal{X}}$$
 as $n \to \infty$,

where $\mu_{\mathcal{X}}: \mathbb{R}_+ \to \mathbb{R}_+$ is the unique solution of the ordinary differential equation (ODE)

 $\mathrm{d}\mu_{\mathcal{X}}(t) = (\lambda + \alpha t^{-1} \mu_{\mathcal{X}}(t)) \mathrm{d}t, \qquad t > 0,$

with initial condition $\mu_{\mathcal{X}}(0) = 0$. In fact, $\mu_{\mathcal{X}}(t) = \frac{\lambda t}{(1 - \alpha)}$.

Fluctuation limit theorem: Assumptions I (2015)

Suppose that

(i)
$$m_n = 1 + \alpha n^{-1} + \delta_n$$
 with $\alpha < 1$ and $\sum_{n=1}^{\infty} |\delta_n| < \infty$;

(ii) $\lambda_n \rightsquigarrow \lambda \ge 0$ as $n \to \infty$;

(iii)
$$n\sigma_n^2 \rightsquigarrow \sigma^2 \ge 0$$
, as $n \to \infty$;

(iv)
$$b_n^2 \rightsquigarrow b^2 \ge 0$$
 as $n \to \infty$;

moreover the following Lindeberg conditions hold

(L1)
$$\sum_{k=1}^{n} \mathsf{E}\left(|\xi_{k,1} - m_{k}|^{2} \mathbb{1}_{\{|\xi_{k,1} - m_{k}| > \theta n^{1/2}\}}\right) \to 0 \text{ for all } \theta > 0,$$

(L2)
$$\frac{1}{n} \sum_{k=1}^{n} \mathsf{E}\left(|\varepsilon_{k} - \lambda_{k}|^{2} \mathbb{1}_{\{|\varepsilon_{k} - \lambda_{k}| > \theta n^{1/2}\}}\right) \to 0 \text{ for all } \theta > 0$$

as $n \to \infty.$

(* E) * E)

 \sim

DQC

Fluctuation limit theorem: Statements

Then, weakly in the Skorokhod space $D(\mathbb{R}_+, \mathbb{R})$,

$$n^{-1/2}\mathcal{M}^n \xrightarrow{\mathcal{L}} \mathcal{M}$$
 as $n \to \infty$,

where $(\mathcal{M}_t)_{t \in \mathbb{R}_+}$ is a Wiener process with variance

$$\sigma_{\mathcal{M}}^2 := \sigma^2 \frac{\lambda}{1-lpha} + b^2.$$

Moreover, suppose that $\alpha < 1/2$. Then, weakly in the Skorokhod space $D(\mathbb{R}_+, \mathbb{R}^2)$,

$$n^{-1/2}\left(\mathcal{X}^n-\mathsf{E}\mathcal{X}^n,\mathcal{M}^n
ight)\stackrel{\mathcal{L}}{\longrightarrow}\left(\mathcal{X},\mathcal{M}
ight) \qquad ext{as}\qquad n o\infty,$$

where $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ satisfies the SDE

$$\mathrm{d}\mathcal{X}_t = \alpha t^{-1} \mathcal{X}_t \mathrm{d}t + \mathrm{d}\mathcal{M}_t, \qquad t > 0,$$

with initial condition $\mathcal{X}_0 = 0$.

SQC

Ornstein-Uhlenbeck fluctuation limit

The SDE can be written in the form

$$\mathrm{d}\mathcal{X}_t = \alpha t^{-1} \mathcal{X}_t \mathrm{d}t + \sigma_{\mathcal{M}} \mathrm{d}W_t, \qquad t > 0.$$

The solution is given as

$$\mathcal{X}_t = \sigma_{\mathcal{M}} t^{\alpha} \int_0^t s^{-\alpha} \mathrm{d} W_s, \qquad t > 0.$$

If $\alpha < 1/2$ the integral is well-defined in L^2 and Itô's sense as well since

$$\int_0^t s^{-2\alpha} \mathrm{d}s = \frac{t^{1-2\alpha}}{1-2\alpha} < \infty.$$

 $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is an Ornstein–Uhlenbeck type process

$$\mathcal{X}_t = \sigma_{\mathcal{M}} \int_0^t \mathbf{e}^{\alpha(\ln t - \ln s)} \mathrm{d} W_s, \qquad t > 0,$$

with logarithmic exponent function.

WBA2015

Critical BPI in varying environment

Session XI

Why $\alpha < 1/2$?

Define the sequence $V_k := Var(X_k)$, $k \in \mathbb{N}$. Then we have the recursion

$$V_k = m_k^2 V_{k-1} + \mathsf{E} M_k^2, \qquad k \in \mathbb{N}.$$

Asymptotic for the variance:

In
$$^{-1}V_n \to \lambda(1-2\alpha)^{-1}((1-\alpha)^{-1}\lambda\sigma^2 + b^2)$$
 if $\alpha < 1/2$,
 In $n)^{-1}V_n \to (1-\alpha)^{-1}\lambda\sigma^2 + b^2$ if $\alpha = 1/2$,
 In $n^{-2\alpha}V_n \to c \ge 0$ if $\alpha > 1/2$, where $c \in \mathbb{R}$ is a constant,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$ if $\alpha > 1/2$,
 In $n \to c \ge 0$
 In $n \to c$

since

$$m_k^2 = 1 + 2\alpha k^{-1} + \widetilde{\delta}_k, \qquad k \in \mathbb{N},$$

with $\sum_{k=1}^{\infty} |\widetilde{\delta}_k| < \infty$.

SQC

★ E ► ★ E ►

Conclusions and future works

- A criticality index was introduced for branching processes with immigration in varying environment.
- Limit theorems were proved for proper nearly critical branching processes with immigration in varying environment.
- Estimating the criticality index and the average immigration intensity.
- Developing tests for hypothesis H₀: α = α₀, e.g., testing the strong criticality (α₀ = 0).
- Investigating the logarithmically and polynomially nearly critical BPIVE.

Session XI

500

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

References

- Ispány, M., Pap, G., van Zuijlen, M.C.A. (2005). Fluctuation limit of branching processes with immigration and estimation of the means *Adv. Appl. Prob.* 37: 523–538.
- Ispány, M., Pap, G. (2010). A note on weak convergence of random step processes. *Acta Mathematica Hungarica* 126(4): 381–395.
- Sriram, T.N. (1994). Invalidity of bootstrap for critical branching processes with immigration. *Ann. Statist.* 22:1013–1023.
- R. Wong, H. Li (1992) Asymptotic expansions for second-order linear difference equations *J. Comp. Appl. Math.* 41: 65–94.

590

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you for your attention!

Session XI

DQR

프 + + 프 +