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Sequence of branching processes with immigration
Galton—Watson branching processes with immigration (BPI)

X" = Zg,ﬁ"]ﬂk, knen, x{"—o,

where, for each n € N, both the offsprings {g,((’? .k, j €N} and

the immigrations {sf(”) : k € N} are identically distributed, and
they are independent, nonnegative, integer valued random
variables.

Parameters: my := E§1 1, Ap = Esﬁ”),
02 .= Vare") T, bRi= Vare!".

mp <1 mp, =1 mp > 1

Classification: > - L
subcritical critical superctritical

WBA2015 Marton Ispany Critical BPI in varying environment Session XI



Asymptotic result |: strictly positive offspring variance
Sriram AS (1994)
Suppose that m, =1+ an™' +o(n~ ") with a € R,

and 02 — 02 >0 as n—oo. Let A/ := XL(ZI)J. Then

_ c
nx" = x as n — oo,

where X := (X})wer, is a (nonnegative) diffusion process with
initial value Xy = 0 and with generator
Lf(x) = (A + ax)f(x) + %szf"(x), fe C(Ry).

This process can also be characterized as the unique solution
to the SDE

dX; = ()\ a4 O(Xt) dt + o/ (Xt)+ dwy, te Ry, Xp=0.

This is a square-root process or a CBI process, related to the
squared Bessel process and Cox-Ingersoll-Ross model in the
financial mathematics.
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Asymptotic result Il: vanishing offspring variance
|, Pap, van Zuijlen JAP (2005)
Suppose that m, =1 +an~' + o(n~') with o € R, and
o2=pn"+o0(n"") as n— cc. Let M} := Z,E’E M.
Then, we have fluctuation limit theorem

nV2(x" —EX" M") £ (X, M)  as  n— oo,

where M = (M;)ier, is a time—changed Wiener process,
i.e., M = WT([)s te R+, with

t S
T(t) = b2t+ﬁ>\/ / e*Yduds,
0 JO

(Wh)ter, is a standard Wiener process; and

t
Xy = / e d M
0

is an Ornstein—Uhlenbeck process driven by M.
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BPI in varying environment (BPIVE)

Goal: To study the nearly criticality in one model!
Galton—Watson branching process with immigration

Xk—1

Xy = ka,/-l-i-?k, k €N, Xo =0,
=1

where the offsprings {{x; : k, j € N} are identically distributed
for each k € N, respectively, and they and the immigrations
{ex : k € N} are independent, nonnegative, integer valued
random variables. The offspring and the immigration
distributions may vary from generation to generation.

The process (Xk)kez, is called branching process with immi-
gration in varying environment (BPIVE) or time varying BPI.

Parameters: my := E&x 1, A == Eey, 02 := Varéy 1, b2 := Varey.
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Applications

General inhomogeneous branching processes:

@ Domain of peer-to-peer file sharing networks, Adar and
Huberman (2000), Zhao et al. (2005)

@ Modeling biodiversity or macroevolution, Aldous and
Popovic (2005), Haccou and lwasa (1996)

@ Epidemic-type Aftershock Sequence (ETAS) in
seismology, Farrington et al. (2003)

Heterogeneous INAR models (Bernoulli offsprings):

@ Understanding and predicting consumers’ buying
behaviour, Béckenholt (1999)

@ Modeling the premium in bonus-malus scheme of car
insurance, Gourieroux and Jasiak (2004)
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Asymptotic for the mean
We have the following deterministic time varying linear
recursion for the mean

E(X) = ME(Xe_1)+ M, KEN,

where the sequence (mg)xen determines the asymptotic
behaviour of the process.
Define the bottom and top Lyapunov exponents as

supn tinfr(n k) =1y, < :=infn supr(n, k),
n K n K

where the partial growing rate function is defined as
r(n k) == 314" log m;

v <0 b <0<y v >0

Classification: =
subcritical 2?? superctritical

The supercritical case was studied by Goettge (1976), Cohn
and Hering (1983), Jagers and Nerman (1985), D’Souza and
Biggins (1992, 1993), D’'Souza (1994).
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Asymptotic for nearly critical recursion
Notation: A\ ~ A stands for the Cesaro convergence
NS 0_i Ak — A as n— oo.
For a deterministic time varying linear recursion

’Xk = MXx_1 + Ak, k € N, Xo =0,

where
Q@ my=1+4ak "+ forsome a € R and 332 |0k < oo;

@ XM~ )\ ask — oo forsome A\ >0, where (\¢)kez, isa
non-negative sequence,

we have
Q@ nilxp—= N1 —-a)if o<, i.e. EX,= O(n);
Q@ (ninn)~'x, — A if =1, i.e. EX,= O(nlnn);
Q@ nx,—>«k if a>1, ie. EX,= 0O(n%),
where « > 0 is a constant,
as n— oo.
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Proof of the asymptotic
Representation for the unique solution, see Elaydi (1.2.4),

k Kk
Xk = Z H ITI,')\/'
j=1 i=j+1
Method of the proof: perturbation argument.
Introduce the new sequence y, := k= “xi, k € N. Then, we
have

Yo = (14 0k)Yk_1 + k%X,

where S22, k| < oc.
This recursion is a small perturbation of the recursion

Zk = Zk_ 1+ K %Xk

Hence, their asymptotic behaviors are similar. Thus, we have

n
Xn ~ n% Z KXk
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Proof of the asymptotic

In case of a < 1, by Toeplitz theorem, we have

A
-1 a—1 —a
n A —
k=1

since

n 1

Y ks [ sds = (1-a)
k=1 0
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Second order linear difference equations |.

An inhomogeneous first order d.e. can be transformed to a
homogeneous second order d.e. Suppose that

me =14 ak™" + Bk~2, M= A+yk .

Then

X+ a(k)xe_1 + b(K)x 2 =0,  k=2,3,...,

where
a(k) ~ ag+ atk™' + axk™2,  b(k) ~ by + b1k~ 4 byk ™2

with ag=-2,8=—-a,a=v-4

and by=1,bj=a,bo=a+ 5 —1.

Asymptotic theory: Wong and Li (1992), goes back to Birkhoff
(‘30).
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Second order linear difference equations |l
Characteristic polynomial:

P +apothby = #—20+1=0 = g1p=1
The common value is a root of the auxiliary equation
a0+bi=0 = —ap+a=0
Indicial polynomial:
k(e —1) + (aik+a)+ by = K2 —(a+1k+a=0

Roots: k1 = 1 and k> = .
Two linearly independent asymptotic solutions if oz # 1 with

x,(,)wgn i=1,2

If « = 1 then we have an extra log n factor.
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Criticality and classification

A BPIVE is called asymptotically critical if m, —1 as n— oo.
More precisely, if the parametrization

e}
me=1+0k™" +6 acR, > |&l<oo
k=1

holds then BPIVE is called nearly critical and it has criticality
index «. In this case, v, =~ = 0.

Classification (regimes) for nearly critical TVBPI:

a<1 a=1 a>1 nearly
proper logarithmically polinomially critical

In the sequel, we investigate proper nearly critical BPIVE.
If « = 0 then a BPIVE is called strongly critical.
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Limit theorem: Assumptions | (2015)

Suppose that

() mp=1+an" 4+, with a <1 and > [d,| < oc;

n=1
(i) Ap~A>0 as n— oo;

(i) 02~ 0%2>0 as n— oc;
(ivy n b2~ 0 as n— oc;
moreover the following Lindeberg conditions hold

1 n
(L1) n > E (!flm - mklzﬂﬂgm_mkbgn}) — 0 forall §>0,
k=1

1 n
(L2) — > E (|€k - )\k|2]1{|5k_)\k|>9n}) — 0 forall >0
k=1
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Limit theorem: Result | (2015)

Let X} := X . Then, weakly in the Skorokhod space
D(R4,R),

_ c
n'x" =X  as  n— oo,

where (Xt)icr, satisfies the SDE

dx; = (A +at ' A dt + o/ XdWy,  t>0,

where (Wh)icr, is a standard Wiener process, with initial
condition Ay = 0.

Formal SDE: the drift 3(t, x) := (\ + at~'x) is not Lipschitz and
it is not defined at t = 0.

Solution: take the process V; := t~“A; and apply the Ito’s
formula (formally)

dVy = Mt=4dt + o/ 2V dWy, t>0,
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Associated martingale differences
Let Fx denote the o-algebra generated by Xy, Xi, ..., Xk.
We have the conditional expectation

E(Xk | Fk_1) = MeXy_1 + k. k € N.
Clearly,
Mk = Xk — E(Xk | .7'—/(_1) = Xk — kak—1 — )\k

defines a martingale difference sequence with respect to the
filtration (Fk)kez,. On the other hand,

Xik—1

My =" (&kj— Mk) + ek — Ak
=

Thus, we have the heteroscedastic property:

E(ME | .7:/(_1) = UEXK—1 + bi
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Heuristic for the limit theorem |.
For all kK € N, we have

Xk—
Xk = My X1+ M+ Mk = X1 + A+ a% + 0k Xy—1 + M

Let 0 < s < t. Then, by iteration,

X, X, 1 | nt]—1 X, | nt]—1 X,
%Z%-ﬁ-g Z (/\k+al;(1>+ Z Ok %ka

k=|ns| k=|ns]

1 [nt|—1
- (0, Xk—1+ €k — Ak)

k=|ns]

where
Xk—1
1 Skj— Mk 1
Wk = : ~N(1,n
nik v/ NXj_q jz_; Ok ( )
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Heuristic for the limit theorem II.

The blue part can be approximated by stochastic integral
equation

t X t
Xt = Xs—i-/ ()\—FOZFU) dU+/ o/ XydWy,
S S

On the other hand, the red part is vanishing in probability since

1 ¢ C <
- D 16k E(Xi—1) < ;Z |0k|k — 0
pa pa

by Kronecker lemma and, by assumption (iv),

n

1 1 = o
Var(nZ(ek—)\)> :,,2§bk_>o
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Weak convergence to a diffusion process I.

For each n € N, let (U])«en be a sequence of R?-valued
adapted random variables w.r.t. a filtration (F})kez, . Introduce
the random step functions:

Lnt]
up:=> Ug, teRy, neN
p

Let (Ut)icr, be a d—dimensional diffusion process

AUy = B(t,U)dt+ (8, U) AWy, tERY,

where : Ry x RY = R and v : R, x RY — R are
continuous functions and (W)scr, is an r-dimensional
standard Wiener process.

Assume that the SDE has a unique weak solution with Uy = Xxg
for all xo € RY. Let (U;)ter, be a solution with Uy = 0.
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Weak convergence to a diffusion process Il.
| & Pap, (2010)

Suppose that, for each T > 0,
Uniform convergence on compacts in probability (ucp)
Lnt]

t
sup ZE(U,Q}I,L)—/ B(s,uMds| - o,
t€[0,T] || k=1 0
sup IS E(URUD)T | 771) — [ a(s.udr(s.uf)T ds| 2> 0,
0

t€[0, 7] || =1

and the conditional Lindeberg condition
LnT]
P
> E(IURIPTupy=ey | FR_4) — O forall 6 > 0.
k=1
Then

I
u" = u as n— oo.

WBA2015 Marton Ispany Critical BPI in varying environment Session XI



Sketch for the proof of the limit theorem

Introduce the new process Y, := k*Xi, k € N, Yy := 0 and
define

Ul .= n* (Y — Yi_1), k,neN.

Then
[nt]

L{f = Z U[(7 =n~! YLntJ
k=1
We prove, by general limit theorem, that weakly in the
Skorokhod space D(R.,R)

n®1 YL”U = Z/{tn i) Uy .=Vt as n— oo
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Sketch for the proof of the limit theorem

This implies, for0 < ) < b < ... < tp,

- c
= (Yoo oo Yintn]) — Yooy Vi)

Hence .
n_1 (XthJ: R 7XLnth) — (Xt1, R ,Xtm)

shows the convergence of finite dimensional distributions.
Then, we prove tigthness by checking the conditional Lindeberg
condition.
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Deterministic limit theorem | (2015)
Suppose that

0

Q@ my=1+an"'+6, with a <1 and ) _ |5, < oc;
n=1

Q@ \y~)2A>0as n— oo

Q@ 02~ 0, as n— o;

Q@ n'b2~ 0 as n— .

Then

_ c
n'x" =y as n— oo,

where py : Ry — R, is the unique solution of the ordinary
differential equation (ODE)

dux(t) = A+ at Tux(t))dt,  t>0,

with initial condition px(0) = 0. Infact, ux(f) = At/(1 —«)
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Fluctuation limit theorem: Assumptions | (2015)

Suppose that

() mp=1+an" 4+, with a <1 and > [d,| < oc;

n=1
(i) Ap~A>0 as n— oo;

(iiiy  no2~»0%2>0, as n— oc;
(iv) b2~ b?>>0 as n— oc;
moreover the following Lindeberg conditions hold

n
(L1) Z E (!5k,1 - mk|2ﬂ{|§k71_mk‘>9,,1/2}) — 0 forall 6> 0,
k=1

1 n
(12) 3 E (lek — MPLye,aypoomrzy) = O forall 00
k=1
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Fluctuation limit theorem: Statements
Then, weakly in the Skorokhod space D(R;,R),

2T Es M as n— oo,

where (M;)icr, is a Wiener process with variance

A
0/2\,1 :2021_a+b2.

Moreover, suppose that « < 1/2. Then, weakly in the
Skorokhod space D(R.,R?),

V2 (X" —EX" M) L (X, M) as n— oo,

where (Xt)icr, satisfies the SDE

dX; = Ctt_1.)('tdt + dM;, t >0,

with initial condition Xy = 0.
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Ornstein-Uhlenbeck fluctuation limit
The SDE can be written in the form

dX; = at~ ' Xdt + o pd W, t>0.

The solution is given as

t
Xt:aMtO‘/ s~ *“dWs, t>0.
0

If o < 1/2 the integral is well-defined in L2 and It6’s sense as

well since
t t1 —2a
/ s 2%ds = < o0.
0 1 — 20&

(Xt)ter, is an Ornstein—Uhlenbeck type process

t
X = aM/ e?t=hs)qu,  t>0,
0

with logarithmic exponent function.
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Why o < 1/27

Define the sequence Vj := Var(Xx), k € N. Then we have the
recursion

Vk = me Vi1 +EMZ,  keN.

Asymptotic for the variance:
Q@ NV, A1-2a)"" (1 —a) "A\?+b?) if a<1/2,
Q@ (nnn)~'V, = (1—-a)"\o? + b if a=1/2,
Q@ n2V,—-c>0if a>1/2, where ccR is aconstant,
since B
mi =1+2ak™ "+,  KEeN,

with 375 [6x| < oo.
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Conclusions and future works

@ A criticality index was introduced for branching processes
with immigration in varying environment.

@ Limit theorems were proved for proper nearly critical
branching processes with immigration in varying
environment.

@ Estimating the criticality index and the average immigration
intensity.

@ Developing tests for hypothesis Hy : a = g, €.9., testing
the strong criticality (g = 0).

@ Investigating the logarithmically and polinomially nearly
critical BPIVE.
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Thank you for your attention!
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