Classes of Equivalence and Identifiability of Age-Dependent Branching Processes

Ollivier Hyrien

University of Rochester

Workshop on Branching Processes and their Applications Badajoz, April 7-10, 2015

Joint work with Rui Chen

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

- Identifiability is central to most statistical procedures (e.g., asymptotic normality; construction of confidence intervals), and in interpreting models
- Studied for deterministic models (e.g., differential equation models) but literature on identifiability of stochastic processes remains limited
- Prakasa Rao, B.L.S. (1992). *Identifiability in Stochastic Models, Characterization of Probability Distributions.* Academic Press.
- Not studied for branching processes
- The property is often claimed without formal proof, partly out of convenience
- We investigated the issue for age-dependent branching processes (single-type, no immigration) and constructed a partition of the family of processes into classes of equivalence

A class of age-dependent branching processes

- The process begins with a single cell of age 0
- Every cell evolves independently of every other cell

Offspring, ξ

- Upon completion of its lifespan, every cell produces a random number of offspring $\xi \in \mathcal{J} = \{0, 1, \cdots, J\}$
- $p := (p_0, ..., p_J)$, where $p_j := \mathbb{P}(\xi = j)$, $j \in \mathcal{J}$, for the offspring distribution

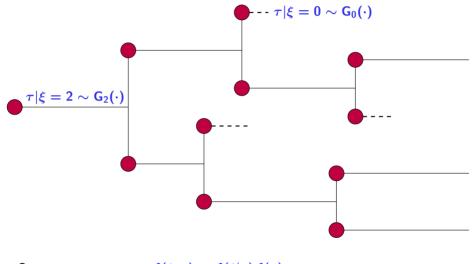
• In cell biology:
$$J = 2$$
 and $\xi = \begin{cases} 0 & \text{cell death} \\ 1 & \text{cell resting/differentiation} \\ 2 & \text{cell division} \end{cases}$

• Put $\mathcal{J}^*(p) := \{j \in \mathcal{J} : p_j > 0\}$

Lifespan, τ

- Put $\mathit{G}_j(t):=\mathbb{P}(au\leq t|\xi=j),\ t\geq 0,\ ext{for every}\ j\in \mathcal{J}^*(p)$
- Assume that $G_j \in \mathcal{D}$, $j \in \mathcal{J}^*(p)$, where \mathcal{D} denotes the collection of all proper distributions

An example of tree generated by the process



~Sevastyanov process: $\mathcal{L}(\xi, \tau) = \mathcal{L}(\xi|\tau)\mathcal{L}(\tau)$ here: $\mathcal{L}(\xi, \tau) = \mathcal{L}(\tau|\xi)\mathcal{L}(\xi)$ (easier to interpret) Bellman-Harris: $\mathcal{L}(\xi, \tau) = \mathcal{L}(\tau)\mathcal{L}(\xi)$

A non-identifiable formulation via competing risks

- The process begins with a single cell of age 0
- Every cell evolves independently of every other cell

Latent failure times, $\mathbf{T} = (T_0, \ldots, T_J)$

- $\mathbf{T} \sim F(t_0, \ldots, t_J)$
- Interpretation: T_j is the hypothetical time needed by some intra-cellular processes to complete their tasks so the cell would generate *j* daughters
- Special case: independent competing risks (Waugh 1955)

$$F(t_0,\ldots,t_J)=F_1(t_0)\ldots F_J(t_J)$$

Offspring and lifespan, (ξ, τ)

• If
$$T_{j_0} = \min_{j=0,\dots,J} T_j$$
 then $\begin{cases} \xi = j_0 \\ \tau = T_{j_0} \end{cases}$

A non-identifiable formulation via competing risks

- Competing risks branching processes used to gain insights into intra-cellular processes involved in cell fate determination
- \Rightarrow Independent latent failure times/competing risks describe these intra-cellular processes
 - This conclusion may not provide much insights because non-identifiability occurs in competing risks models if the latent failure times are not independent (Cox, 1959; Tsiatis 1975; Peterson 1976, and many others)
 - Specifically, for every distribution $F(t_0, \ldots, t_J)$ for dependent failure times **T**, there exists a distribution

$$F^{(*)}(t_0,\ldots,t_J) = F_1^{(*)}(t_0)\ldots F_1^{(*)}(t_J)$$

such that $\mathcal{L}(\tau,\xi|F) = \mathcal{L}(\tau,\xi|F^{(*)})$

• Our class of processes may be equivalent to the class of competing risks models, but each process is a representative member of one equivalence class, such that the above type of nonidentifiability is not a concern

Formulation of the the problem

Put

- $G = \{G_j, j \in \mathcal{J}^*(p)\}$
- C = (p, G): characteristics of the process
- Z(t) : the size of the population at time $t \ge 0$

Define

- $\bullet \ \mathcal{P}$ denotes the set of all processes that satisfy the above assumptions
- $\mathcal{P}_0 \subset \mathcal{P}$ is the subset of processes with characteristics (p, G) satisfying $p_1 = 0$

Question:

Are there distinct characteristics (p, G) under which the distribution of Z(t) is identical for all $t \ge 0$?

Answering this question will inform us about what can or cannot be estimated by only observing Z(t)

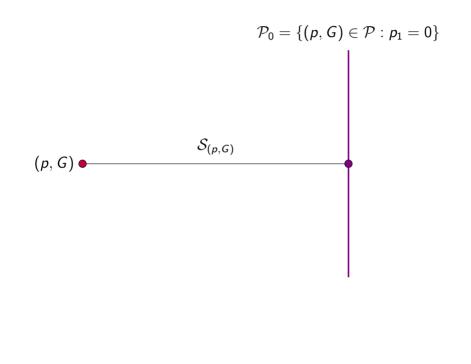
Equivalence

Definition (equivalence)

We shall say that two processes with characteristics (p, G) and (\hat{p}, \hat{G}) are equivalent if, for all $t \ge 0$, the distribution of Z(t) is the same under either characteristics.

- Let $C_{p,G}$ denote the equivalence class defined as the collection of all processes included in \mathcal{P} that are equivalent to the process with characteristics (p, G).
- Objective: construct the class $C_{p,G}$ for any admissible characteristics (p, G).
- Application to study identifiability of families of parametric models
 - A process with exponential lifespan (not always identifiable)
 - A process with (non-exponential) gamma distributed lifespan (always identifiable)
 - A Smith-Martin process (not always identifiable)

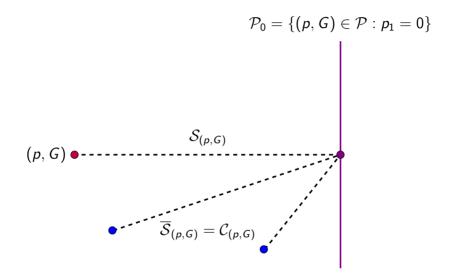
・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへぐ



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ◇◇◇



・ロット・聞・ ・聞・ ・聞・ うらぐ

Step 1: a collection of equivalent processes

- Let $(p,G) \in \mathcal{P}$, assume that $p_1 \in [0,1)$
- For every $a \in [0, p_1]$, define

$$p^{(a)} = (p_0^{(a)}, \dots, p_J^{(a)})$$
 where $p_j^{(a)} := \begin{cases} rac{p_j}{1-a} & j \in \mathcal{J} \setminus \{1\}\\ rac{p_1-a}{1-a} & j = 1 \end{cases}$

and, for every $t \geq 0$ and $j \in \mathcal{J}^*(p)$, put

$$G_j^{(a)}(t) := (1-a)G_j * \sum_{k=0}^{\infty} a^k G_1^{*k}(t)$$

where $G_{j} * G_{1}(t) := \int_{0}^{t} G_{j}(t-x) dG_{1}(x)$

• Let $S_{p,G}$ denote the collection of processes with characteristics $(p^{(a)}, G^{(a)}), a \in [0, p_1]$

- ロ ト - 4 回 ト - 4 □ - 4

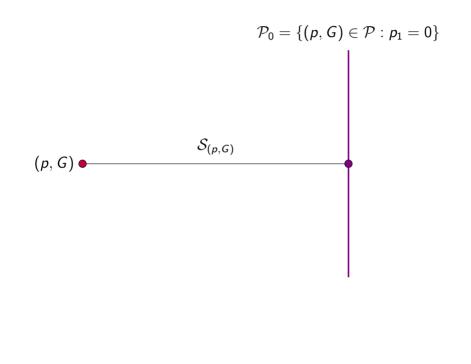
- $\mathcal{S}_{p,G}$ includes
 - the process (p, G) since $(p^{(0)}, G^{(0)}) = (p, G)$
 - one process from \mathcal{P}_0 since $p_1^{(p_1)} = 0$

Step 1: A collection of equivalent processes

• Theorem

For all $t \ge 0$, the distribution of the population size process Z(t) is identical under all processes included in $S_{p,G}$; that is, $S_{p,G} \subseteq C_{p,G}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Step 2: A larger collection of equivalent processes

• Setting $a = p_1$ yields

$$egin{array}{rll} p_{j}^{(p_{1})} &=& \left\{ egin{array}{ccc} rac{p_{j}}{1-
ho_{1}} & j\in\mathcal{J}ackslash \{1\} \ 0 & j=1, \end{array}
ight. \ \mathcal{L}_{g_{j}^{(p_{1})}}(s) &=& rac{(1-
ho_{1})\mathcal{L}_{g_{j}}(s)}{1-
ho_{1}\mathcal{L}_{g_{1}}(s)}, \quad j\in\mathcal{J}^{*}(p)ackslash \{1\}, \end{array}$$

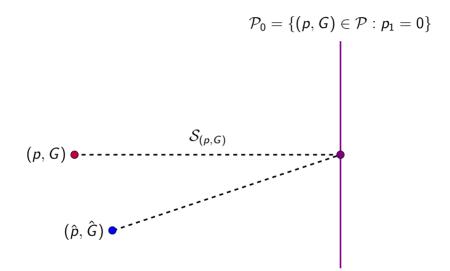
which identifies a process in \mathcal{P}_{0}

• Any process with characteristics (\hat{p}, \hat{G}) that satisfy

$$\begin{cases} \hat{p}_j^{(\hat{p}_1)} = p_j^{(p_1)} & j \in \mathcal{J} \setminus \{1\} \\ \mathcal{L}_{\hat{g}_j^{(\hat{p}_1)}}(s) = \mathcal{L}_{g_j^{(p_1)}}(s) & j \in \mathcal{J}^*(p) \setminus \{1\} \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

belongs to $C_{p,G}$ (here, $\mathcal{L}_h(s)$ is the Laplace transform of any H)



◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

Step 2: A larger collection of equivalent processes

• By solving eqns. (1) we find that (\hat{p}, \hat{G}) satisfies

$$\left\{ egin{array}{ll} \hat{p}_{j} = p_{j}^{(p_{1})}(1-\hat{p}_{1}) & j\in\mathcal{J}ackslash \{1\} \ \mathcal{L}_{\hat{g}_{j}}(s) = \mathcal{L}_{g_{j}}^{(p_{1})}(s)\{1-\hat{p}_{1}\mathcal{L}_{\hat{g}_{1}}(s)\}/(1-\hat{p}_{1}) & j\in\mathcal{J}^{*}(p)ackslash \{1\}, \end{array}
ight.$$

where $\hat{p}_1 \in [0,1)$ and $\hat{G}_1 \in \mathcal{D}_{p,G}$, and where $\mathcal{D}_{p,G} \subseteq \mathcal{D}$

- Write (p_{p̂1,Ĝ1}, G_{p̂1,Ĝ1}) for any characteristics that satisfy eqns.
 (2).
- Then, the collection of processes

 $\overline{\mathcal{S}}_{p,G} := \bigcup_{\hat{\rho}_1 \in [0,1)} \bigcup_{\hat{G}_1 \in \mathcal{D}_{p,G}} \left\{ \text{process with characteristics } (p_{\hat{\rho}_1,\hat{G}_1}, G_{\hat{\rho}_1,\hat{G}_1}) \right\}$

is included in $\mathcal{C}_{p,G}$. It is also clear that $\mathcal{S}_{p,G} \subset \overline{\mathcal{S}}_{p,G}$.

• So far, we have shown that

$$\mathcal{S}_{p,G} \subset \overline{\mathcal{S}}_{p,G} \subseteq \mathcal{C}_{p,G}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ◇◇◇

Step 3: Exhaustivity of $\overline{S}_{p,G}$ (when J = 2 and J = 3)

- Since $\overline{\mathcal{S}}_{p,G} \subseteq \mathcal{C}_{p,G}$, it is sufficient to prove that $\mathcal{C}_{p,G} \subseteq \overline{\mathcal{S}}_{p,G}$
- Let (p̂, Ĝ) be the characteristics of any process included in C_{p,G}. Then, by construction, the process with characteristics (p̂^(p̂₁), Ĝ̂^(p̂₁)) belongs to P₀

Lemma

Suppose that J = 2 or J = 3. For every admissible (p, G), the equivalence class $C_{p,G}$ includes a single process in \mathcal{P}_0 .

• Hence $(\hat{p}^{(\hat{p}_1)}, \hat{G}^{(\hat{p}_1)}) = (p^{(p_1)}, G^{(p_1)})$ and the process with characteristics (\hat{p}, \hat{G}) belongs to $\overline{S}_{p,G}$, which implies that $C_{p,G} \subseteq \overline{S}_{p,G}$

Theorem

We have $C_{p,G} = \overline{S}_{p,G}$ for every admissible (p, G) when J = 2 and J = 3.

Characterization of $C_{p,G}$ using moments when J = 2

- In applications, model parameters are sometimes estimated using moments of the process rather than its distribution.
- Then, a relevant question is which moments are sufficient to fully characterize the equivalence class $C_{p,G}$?
- Answer when J = 2: expectation and variance

Theorem

Assume that J = 2 and that the marginal distribution of $\{Z(t), t \ge 0\}$, is determined by its moments. Then, $C_{p,G} = \{\text{processes with characteristics } (\hat{p}, \hat{G}) : \hat{m}(t) = m(t), \hat{m}_2(t) = m_2(t), t \ge 0\}.$

◆□ > < @ > < E > < E > E のQ @

Application to model identifiability

- Suppose that G belongs to a family of distributions (e.g., exponential, gamma...)
- \bullet Let $\mathcal{M} \subset \mathcal{P}$ denote the resulting family of processes
- Let $(p, G) \in \mathcal{M}$
- We want to know whether (p, G) is identifiable within the family of models \mathcal{M}
- It is sufficient to show that

$$\mathcal{C}^{\mathcal{M}}_{p,G} := \mathcal{C}_{p,G} \cap \mathcal{M} = \{(p,G)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Exponentially distributed lifespan

Corollary

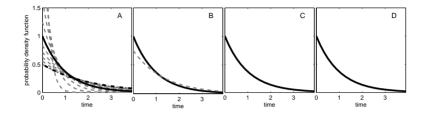
Suppose that J = 2 and, for every $j \in \mathcal{J}^*(p)$, that $G_j(t) = 1 - e^{-\psi_j t}$, $t \ge 0$, for some $\psi_j \in \mathbb{R}^*_+$. Then, (p, G) is uniquely identified by the process $\{Z(t), t \ge 0\}$, except in the following cases:

Case 1: If
$$\psi_j = \psi$$
, $j \in \mathcal{J}^*(p)$, then $\mathcal{C}_{p,G}^{\mathcal{M}}$ includes the processes with characteristics (\hat{p}, \hat{G}) such that $\hat{p}_1 \in [0, 1), \hat{p}_j = p_j(1 - \hat{p}_1)/(1 - p_1), j \in \mathcal{J}^*(p) \setminus \{1\}, \hat{\psi}_j = \psi(1 - p_1)/(1 - \hat{p}_1), j \in \mathcal{J}^*(\hat{p}).$

Case 2: If $\psi_j = \psi$, $j \in \mathcal{J}^*(p) \setminus \{1\}$, $p_1 \in (0, 1)$, $\psi < \psi_1$, and $p_1 \neq 1 - \psi/\psi_1$, then $C_{p,G}^{\mathcal{M}}$ consists of the processes with characteristics (p, G) and (\hat{p}, \hat{G}) where $\hat{p}_1 = 1 - \psi/\psi_1$, $\hat{p}_j = p_j \psi/\{(1 - p_1)\psi_1\}$, $\hat{\psi}_1 = \psi_1$, $\hat{\psi}_0 = \hat{\psi}_2 = (1 - p_1)\psi_1$, $j \in \mathcal{J}^*(p) \setminus \{1\}$.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

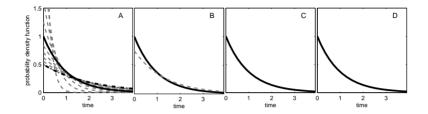
An illustrative example



- Assume that $\xi \sim p = (\frac{1}{5}, \frac{1}{2}, \frac{3}{10})$ and $\tau | \xi \sim$ exponential with parameters $\psi_0 = \psi_1 = \psi_2 = 1$ (Case 1)
- Equivalence class $\mathcal{C}_{p,\mathcal{G}}^{\mathcal{M}} = \{(\hat{p},\hat{G}) \in \mathcal{M}:$

$$\begin{cases} \hat{\rho} = \left(\frac{2}{5}(1-\hat{\rho}_{1}), \hat{\rho}_{1}, \frac{3}{5}(1-\hat{\rho}_{1})\right) \\ \hat{\psi}_{0} = \hat{\psi}_{1} = \hat{\psi}_{2} = \frac{1}{2(1-\hat{\rho}_{1})} \end{cases} \text{ where } \hat{\rho}_{1} \in [0,1) \end{cases}$$

- Setting $\hat{p}_1 = 0$ yields $\hat{p} = (\frac{2}{5}, 0, \frac{3}{5})$ and $\hat{\psi}_0 = \hat{\psi}_2 = 0.5$, which belongs to \mathcal{P}_0
- Fig. 1.A displays examples of probability density functions ĝ₂ for a sample of processes that belong to C_{p.G}.



• In Fig. 1.B, we set
$$\begin{cases} p = \left(\frac{1}{5}, \frac{1}{2}, \frac{3}{10}\right) \\ \psi_0 = \psi_2 = 1 \\ \psi_1 = 1.5 \end{cases} \iff \begin{cases} \hat{p} = \left(\frac{4}{15}, \frac{1}{3}, \frac{2}{5}\right) \\ \hat{\psi}_0 = \hat{\psi}_2 = 0.75 \\ \hat{\psi}_1 = 1.5 \end{cases}$$

• In Fig. 1.C, we set
$$\begin{cases} p = \left(\frac{1}{5}, \frac{1}{2}, \frac{3}{10}\right) \\ \psi_0 = \psi_2 = 1 \\ \psi_1 = 0.75 \end{cases}$$
 no equivalent process

• In Fig. 1.D, we set
$$\left\{ \begin{array}{ll} p = \left(\frac{1}{5}, \frac{1}{2}, \frac{3}{10}\right) \\ \psi_0 = \psi_1 = 1 \\ \psi_2 = 2 \end{array} \right.$$
 no equivalent process

Gamma distributed lifespan

Corollary

Suppose that J = 2 and, for every $j \in \mathcal{J}^*(p)$, that G_j is a gamma distribution with parameters $\kappa_j > 0$, $\omega_j > 0$ and $\omega_j \neq 1$; that is,

$$G_j(t) := \int_0^t \frac{\kappa_j^{\omega_j}}{\Gamma(\omega_j)} x^{\omega_j-1} e^{-\kappa_j x} dx$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

for some $\psi_j := (\omega_j, \kappa_j) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, $j \in \mathcal{J}^*(p)$. Then, (p, G) is uniquely identified by the process $\{Z(t), t \ge 0\}$.

Identifiability of a Smith-Martin process

Corollary

Suppose that J = 2 and, for every $j \in \mathcal{J}^*(p)$, that

$$G_j(t) = 1 - e^{-\psi_j(t-\delta_j)} \quad (t \ge \delta_j).$$

Then, (p, G) is uniquely identified by $\{Z(t), t \ge 0\}$ except:

Case 1: If
$$\psi_j = \psi$$
, $j \in \mathcal{J}^*(p)$, and $\delta_1 = 0$ when $p_1 = 0$, $\mathcal{C}_{p,G}^{SM}$ includes
the S.M. processes with characteristics
 $(\hat{p}, \hat{G}) \in \{\hat{p}_1 \in (0, 1), \hat{p}_j = p_j(1 - \hat{p}_1)/(1 - p_1), \hat{\delta}_1 = 0, \hat{\delta}_j = \delta_j, \hat{\psi}_1 = \hat{\psi}_j = \psi(1 - p_1)/(1 - \hat{p}_1), j \in \mathcal{J}^*(p) \setminus \{1\}\} \cup \{\hat{p}_1 = 0, \hat{p}_j = p_j/(1 - p_1), \hat{\delta}_j = \delta_j, \hat{\psi}_j = \psi(1 - p_1), j \in \mathcal{J}^*(p) \setminus \{1\}\}.$

Case 2: If $p_1 \in (0, 1)$, $p_1 \neq 1 - \psi/\psi_1$, $\delta_1 = 0$, $\psi_j = \psi$, $j \in \mathcal{J}^*(p) \setminus \{1\}$, and $\psi < \psi_1$, $C_{p,G}^{SM}$ consists of the S.M. processes with characteristics (p, G) and (\hat{p}, \hat{G}) where $\hat{p}_1 = 1 - \psi/\psi_1$, $\hat{p}_j = p_j \psi/\{(1 - p_1)\psi_1\}, \hat{\delta}_1 = 0, \hat{\delta}_j = \delta_j, \hat{\psi}_1 = \psi_1,$ $\hat{\psi}_j = (1 - p_1)\psi_1, j \in \{0, 2\}.$

Conclusion

- We have partitioned a family of age-dependent branching processes into classes of equivalence
- These equivalence classes are easy to construct by solving a set of equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• This result is useful to study identifiability of parametric age-dependent branching processes

• CHEN, R., AND HYRIEN, O. (2014). On classes of equivalence and identifiability of age-dependent branching processes. *Advances in Applied Probability*, 46, 704-718.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!