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Branching process in (1,1) RW

Harris (1952),
(1,1) random walk ↔ Galton-Watson tree.

Dwass (1975),
Branching process (with immigration) in simple RW.

Kesten, Kozlov and Spitzer (1975),
Branching process ↔ non-homogeneous (1,1) RW;
Stable law for RWRE.

Rogers (1984), by using branching structure, showed that
local time of (1,1) RW converges to Brownian local time.

Gantert and Shi (2002), Many visit to a single site by RWRE.

Zeitouni (2004), Invariant density
related to “the environment viewed from particle”.

Afanasyev (2014) proved a conditional Ritter Theorem.
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Branching Structure for (1,1) RW

Suppose lim supn→∞Xn =∞. Define T1 = inf{n : Xn > 0}.
Let U0 = 1, and for i < 0,

Ui = #{0 ≤ n < T1 : Xn = i+ 1, Xn+1 = i}.

Then U0, U−1, ... forms a branching process with

P (Ui−1 = k|Ui = 1) = qki pi, k = 0, 1, 2, ....

[KKS75] Kesten, H., Kozlov, M.V. and Spitzer, F., A limit law for
random walk in a random environment, Compos. Math.,
Vol.30, pp 145-168, 1975



Branching structure for (L,R) RW?
(Multitype branching process)

Key indicated there maybe some multitype branching process
within (L,1) RW path, but he did not give the construction.

[K84] Key, E.S., Limiting distributions and regeneration times for
multitype branching processes within immigration in a ran-
dom environment, Ann. Probab. 15(1), 344õ353, pp 1987
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Hong and Wang (2013):
Branching structure for (L,1) RW

Hong and Zhang (2010):
Branching structure for (1,R) RW

Wang and Hong (2014):
Branching structure for (L,R) RW

[HW13] Hong, W.M. and Wang, H.M., Intrinsic branching structure within
(L-1) random walk in random environment and its applications,
Infin. Dimens. Anal. Quantum Probab. Relat. Top., Vol. 16,
1350006 [14 pages], 2013

[HZ10] Hong, W.M. and Zhang, L., Branching structure for the transient
(1; R)-random walk in random environment and its applications,
Infin. Dimens. Anal. Quantum Probab. Relat. Top., Vol. 13(4),
pp 589-618, 2010

[HW14] Wang, H.M. and Hong, W.M., Intrinsic branching structure within
random walk on Z, Theory Probab. Appl., Vol. 58(4), pp 640-659,
2014



(L,R) random walk

Fix 1 ≤ L,R ∈ Z.
Let Λ = {−L,−L+ 1, ..., R}/{0}.
Environment: ω = (ωi)i∈Z where for i ∈ Z, ωi = (ωi(l))l∈Λ

is a probability measure on i+ Λ.
Random walk {Xn} : a Markov Chain, starting from 0,
with transition probabilities

Pω(Xn+1 = i+ l|Xn = i) = ωi(l), l ∈ Λ.



Branching structure for (L,1) RW

Consider (L, 1) RW. Suppose lim supn→∞Xn =∞. Define

T1 = inf{n > 0 : Xn > 0}.
Let U0 = e1 and for i ≤ 0, l = 1, ..., L,

Ui,l = #{0 ≤ n < T1 : Xn > i,Xn+1 = i− l + 1}.
Set

Ui = (Ui,1, ..., Ui,L).

i− 1

i

i+ 1

i+ 2

Ui, 1 Ui, 2



i− 2

i− 1

i

i+ 1

i+ 2

Figure. The figure illustrates the offspring born to a type-1 particle.

It has 4 type-1 children and 3 type-2 children.

Pω
(
Ui−1 = (u1, ..., uL)

∣∣Ui = e1

)
=

(u1 + ...+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1).
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Figure. The figure illustrates the offspring born to a type-2 particle.

It gives birth to a type-1 child with probability one. Then it gives

births to certain particles with common distribution as type-1 particles.

For L ≥ l ≥ 2,

Pω
(
Ui−1 = (u1, ...,1 + ul−1, ..., uL)

∣∣Ui = el
)

=
(u1 + ...+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1).
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Theorem(Hong and Wang 2013)

Suppose that lim supn→∞Xn = ∞. Then U0, U−1, U−2, ... forms
an L-type branching process whose offspring distributions are

Pω(Ui−1 = (u1, ..., uL)
∣∣Ui = e1)

=
(u1 + ...+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1),

and for 2 ≤ l ≤ L,

Pω
(
Ui−1 = (u1, ..., 1 + ul−1, ..., uL)

∣∣Ui = el
)

=
(u1 + ...+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1).

Furthermore,

T1 = 1 +
∑
i≤0

Ui(2, 1, ..., 1)t.



Branching Structure for (2,2) RW

Consider (2,2) RW. Suppose lim supn→∞Xn =∞. Define

T1 = inf{n ≥ 0 : Xn > 0}.

i− 3

i− 2

i− 1

i

i+ 1

Ai, 1Ai, 2 Ai, 3 Bi, 1 Bi, 2 Bi, 3 Ci, 1 Ci, 2 Ci, 3

Figure. The figure illustrates type A, B and C excursions at i.

We draw only the first step and the last step, omitting all things

between these two steps. Between these two steps, the walk walks

below i− 1.



Define for i ≤ 0 and j = 1, 2, 3,

Ai,j = #{Ai,j excursions before T1},

Bi,j = #{Bi,j excursions before T1},

Ci,j = #{Ci,j excursions before T1},

Ui = (Ai,1, Ai,2, Ai,3, Bi,1, Bi,2, Bi,3, Ci,1, Ci,2, Ci,3).

Theorem(Hong and Wang 2014)

Suppose that lim supn→∞Xn = ∞. Then {Ui}i≤1 is a 9-
type non-homogeneous branching processes whose immigra-
tion law and offsprings distributions will be stated below.
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Theorem

Suppose that lim supn→∞Xn =∞. Then

T1 = 1 +
∑
i≤0

Ui(2, 2, 1, 1, 1, 0, 2, 2, 1)t,

E0
ω(T1) = 1 +

∑
i≤0

u1Q0 · · ·Qi(2, 2, 1, 1, 1, 0, 2, 2, 1)t

where Qi ∈ R9 × R9, u1 ∈ R9 depending only on ω.



Define for k ≤ i,

fk(i, i+ 1) = P kω (the walk hits (i,∞) at i+ 1);

fk(i, i+ 2) = P kω (the walk hits (i,∞) at i+ 2).

Define indexes αi,1, αi,3 and αi,2 correspondingly to Ai,1 Ai,3,
and Ai,2.

Let

αi,1 := ωi(−1)
∑
n,m≥0

(n+m)!

n!m!
[ωi−1(−1)fi−2(i− 2, i− 1)]n

× [ωi−1(−2)fi−3(i− 2, i− 1)]mωi−1(1),

αi,3 := ωi(−1)
∑
n,m≥0

(n+m)!

n!m!
[ωi−1(−1)fi−2(i− 2, i− 1)]n

× [ωi−1(−2)fi−3(i− 2, i− 1)]mωi−1(2),

αi,2 := ωi(−1)− αi,1 − αi,3.
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αi,1 =
ωi(−1)ωi−1(1)

1− ωi−1(−1)fi−2(i− 2, i− 1)− ωi−1(−2)fi−3(i− 2, i− 1)
,

αi,3 =
ωi(−1)ωi−1(2)

1− ωi−1(−1)fi−2(i− 2, i− 1)− ωi−1(−2)fi−3(i− 2, i− 1)
,

αi,2 := ωi(−1)− αi,1 − αi,3.

Define similarly βi,1, βi,2, βi,3, γi,1, γi,2, γi,3.

Ai,1 ↔ αi,1, Ai,2 ↔ αi,2, Ai,3 ↔ αi,3;

Bi,1 ↔ βi,1, Bi,2 ↔ βi,2, Bi,3 ↔ βi,3;

Ci,1 ↔ γi,1, Ci,2 ↔ γi,2, Ci,3 ↔ γi,3.
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Immigration Law

−2

−1

0

1

2

The imaginary step A1, 1 A1, 2 A1, 3

Figure. Adding the imaginary step {1→ 0}, the path before T1

forms a type A particle, it may be a A1,1, A1,2 or A1,3 excursion.

Pω(U1 = e1) = P 0
ω(A1,1 = 1) =

α1,1

α1,1 + α1,2 + α1,3
,

Pω(U1 = e3) = P 0
ω(A1,3 = 1) =

α1,3

α1,1 + α1,2 + α1,3
,

Pω(U1 = e2) = P 0
ω(A1,2 = 1) =

α1,2

α1,1 + α1,2 + α1,3
.

(1)



(a) Offspring distributions of Ai+1,1, Ai+1,3, Ci+1,1 and Ci+1,3

particles

i− 2

i− 1

i

i+ 1

i+ 2

Ai, 1 Ai, 2 Bi, 1 Bi, 2

Ai+1, 1 Ai+1, 3

Ci+1, 1 Ci+1, 3

Figure. Ai+1, 1, Ai+1, 3, Ci+1, 1 and Ci+1, 3 share the same off-
spring distribution. They could only give births to Ai, 1, Ai, 2,
Bi, 1 and Bi, 2 particles.

With ζi = 1− αi,1 − αi,2 − βi,1 − βi,2, for k = 1, 3, 7, 9,

P 0
ω(Ui = (a, b, 0, c, d, 0, 0, 0, 0)

∣∣Ui+1 = ek)

=
(a+ b+ c+ d)!

a!b!c!d!
αai,1α

b
i,2β

c
i,1β

d
i,2ζi.
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(b) Offspring distributions of Ai+1,2, and Ci+1,2 particles

i− 2

i− 1

i

i+ 1

i+ 2

Ai, 1 Ai, 2 Bi, 1 Bi, 2 P 0
ω(Ai, 3 + Bi, 3 = 1) = 1

Ci+1, 2 Ai+1, 2

Figure. Offsprings of Ai+1, 2, Ci+1, 2. Before the last step hap-
pens, with probability 1, a Bi, 3 or Ai, 3 excursion would be born.

P 0
ω(Ai,3 = 1

∣∣Ui+1 = e2 or e8) =
αi,3

αi,3 + βi,3
,

P 0
ω(Bi,3 = 1

∣∣Ui+1 = e2 or e8) =
βi,3

αi,3 + βi,3
.



P 0
ω(Ui = (a, b,1, c, d, 0, 0, 0, 0)

∣∣Ui+1 = e2 or e8)

=
(a+ b+ c+ d)!

a!b!c!d!
αai,1α

b
i,2β

c
i,1β

d
i,2ζi

αi,3
αi,3 + βi,3

,

P 0
ω(Ui = (a, b,0, c, d,1, 0, 0, 0)

∣∣Ui+1 = e2 or e8)

=
(a+ b+ c+ d)!

a!b!c!d!
αai,1α

b
i,2β

c
i,1β

d
i,2ζi

βi,3
αi,3 + βi,3

.



(c) Offspring distributions of Bi+1,1, and Bi+1,3 particles

i− 2

i− 1

i

i+ 1

i+ 2

Ai, 1 Ai, 2 Bi, 1 Bi, 2P 0
ω(Ci, 1 + Ci, 2 = 1) = 1

Bi+1, 1 Bi+1, 3

Figure. The offsprings of Bi+1, 1 and Bi+1, 3. Since at last, the
walk jumps from i to some position above i, before the last step
happens, it must return to i from below. Therefore with proba-
bility 1, a Ci, 1 or a Ci, 2 excursion would be born.



(d) Offspring distribution of Bi+1,2 particles

i− 2

i− 1

i

i+ 1

i+ 2

Bi+1, 2

Figure. The offsprings (case 1) of Bi+1, 2 excursion. The walk never
visited i between the first and the last step. Therefore, only a
type Ci, 3 excursion would be born.
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i
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i+ 2

Ai, 1 Ai, 2 Bi, 1 Bi, 2P 0
ω(Ci, 1 + Ci, 2 = 1) = 1 P 0

ω(Ai, 3 + Bi, 3 = 1) = 1

Bi+1, 2

Figure. The offsprings (case 2) of Bi+1, 2 excursion. Between the
first and the last step, the walk did visit i. Therefore P 0

ω(Ci, 1 +
Ci, 2 = 1) = 1 and P 0

ω(Ai, 3 + Bi, 3 = 1) = 1.
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ω(Ui = (a, b, 0, c, d,1, 0,1, 0)

∣∣Ui+1 = e5)

=
(a+ b+ c+ d)!

a!b!c!d!
αa
i,1α

b
i,2β

c
i,1β

d
i,2ζi

(βi+1,2 − γi,3)γi,2βi,3
βi+1,2(γi,1 + γi,2)(αi,3 + βi,3)

.



Random walk in random environment
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Ω : collection of ω = (ωx)x∈Z where for x ∈ Z, ωx = (ωxy)y∈Z is
a probability measure on Z.
θ : shift operator on Ω defined by (θω)x := ωx+1.

F : Borel σ-algebra on Ω.

P : a probability measure on (Ω,F), being i.i.d. or ergodic.

For a realization of ω, consider a Markov chain {Sn}n≥0 with
transitional probabilities

P x0ω (Sn+1 = x+y
∣∣Sn = x) = ωxy for all n ≥ 0, P x0ω (S0 = x0) = 1.

{Sn} : random walk (with unbounded jumps) in random en-
vironment ω.

P x0ω : the quenched law.

P x0(·) =
∫
P x0ω (·)P(dω) : the annealed law.



Some applications of Branching Structure
for random walk

If for some 1 ≤ L,R ∈ Z,
P(ω0y = 0, for y < −L and y > R) = 1,

{Sn} is called RWRE with bounded jumps ((L,R) RWRE).

Wang (2013) prove the stable law for (L,1) RWRE, partially
generalizing Kesten, Kozlov and Spitzer (1975).
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Bremont (2009) proved a LLN for (L, R) RWRE, but for
min{L,R} ≥ 2, no explicit velocity was given.

Wang and Hong (2014) reproved the LLN and gave explicitly
the velocity by using the branching structure of (L, R) RWRE.

Hong, Zhou and Zhao (2014) gave the explicit stationary distri-
bution of the (L, 1)-reflecting random walk by using the (L, 1)
branching structure.

Hong and Shun (2013) proved the renewal theorem for (L, 1)
RWRE.

Wang (2014+) proved the LLN for BDP with bounded jumps in
random environment with explicit velocity.

Hong and Yang (2014+) showed the convergence of the local time
of (1, L) RW to Brownian local time.
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RWRE with unbounded jumps

Up to our knowledge, there are only 3 papers, Andjel (1988),
Comets and Popov (2012), Wang (2014+).

Condition A

(A1) P is stationary and ergodic;

(A2) P-a.s.
∑∞

n=0 Pω(Sn = y|S0 = x) > 0, for all x, y ∈ Z;

(A3) There exists some C > 0 such that for all s > 0, P-a.s.∑
|j|≥s

ω0j < Ce−s.

Andjel 1988, 0-1 law

Under condition (A), we have P (Xn → ∞) = 1 or P (Xn →
−∞) = 1 or P (Xn is recurrent) = 1.
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For % ∈ N, let

ω%xy =

{
ωxy, if 0 < |y| < %,
0, if |y| ≥ %,
ωx0 +

∑
y:|y|≥ρ ωxy, if y = 0.

Let {S%n} be random walk in truncated environment ω%. Define

N%
∞(x) =

∞∑
n=0

1{S%
n=x}.

Condition B
(B1) P is stationary and ergodic;

(B2) P(ω01 > ε) = 1 for some ε > 0;

(B3) ∃r > 0, α > 1 such that for all s ≥ 1,
∑
|y|>s ω0y ≤ rs−α;

(B4) ∃ non-increasing g ≥ 0 such that
∑∞

k=1 kg(k) < ∞ and a
finite %0 > 0 such that for all x ≤ 0 and % > %0

P-a.s., E0
ω(N%

∞(x)) ≤ g(|x|).
(“The strong uniform transience to the right”, it precludes the

existence of trap.)



Theorem(Comets and Popov 2012, LLN)

Suppose that Condition (B) is satisfied. Then for all % > %0,
∃ v% > 0 such that

P -a.s.
Sρn
n
→ v%;

moreover, there exists Q% � P such that v% =
∫

ΩE
0
ω(S%1)dQ% and

v% → v∞ as %→∞.

Remark

(B3) requires the uninform and integrable polynomial
tail of the jumps. The authors said “It is a challenging problem
to find weaker conditions that still permit to obtain LLN for
RWREs with unbounded jumps with only polynomial tails.”
(B4) is also called “the strong uniform transience to the
right”, it precludes the existence of trap. The authors said
“In particular, it would be especially interesting to substi-
tute the current condition by a weaker one; however, at
the moment we do not have any concrete results and/or plausible
conjectures which go in that direction.”
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Condition C
(C1) P is stationary and ergodic.

(C2) There exists ε > 0 such that P(ω01 > ε) = 1.

(C3) There exist small ε0 > 0 and proper D > 0, such that P-a.s.,

ω0j < D|j|−(3+ε0).

Define T = inf{n > 0 : Sn > 0}, Uk = #{0 ≤ n < T : Sn = k}.

Theorem(Wang 2014)

Suppose that Condition C holds and E(T ) <∞. Then

P -a.s., lim
n→∞

Sn
n

= vP > 0

where

vP =
E
(∑∞

i=1

∑
k≤0Eθ−kω

(
Uk|ST=i

)∑
j∈Z jω0j

)
∑∞

i=1E
(
T |ST = i

) .
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Remark

(1) We prove the LLN when the tails of the jumps decay polyno-
mially.
(2) We do not need the uniform transience condition (B4) used
in Comets and Popov 2012. However
(3) We don’t know how to calculate E0

ω(T1), so we could not give
explicitly the velocity vP, except for some special case e.g.

P(ω0y = 0 for all y ≥ 2) = 1.



BDP with bounded jumps in random environment
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Space of Random Environment

L, R ≥ 1 are two integers(jump size).

Ω : collection of ω = (ωi)i∈Z = (µLi , ..., µ
1
i , λ

1
i , ..., λ

R
i )i∈Z,

µli, λ
r
i ≥ 0, i ∈ Z, l = 1, .., L, r = 1, ..., R.

F : Borel σ-algebra on Ω.

θ : shift operator on Ω defined by (θω)i = ωi+1.

P : a probability measure on (Ω,F) which is assumed to be
i.i.d. or sometimes stationary and ergodic.

Random environment ω is a random element of Ω chosen
according to P.



(L,R) BDPRE

Given a realization of ω,
let {Nt}t≥0 be a continuous time Markov chain,
which waits at a state n an exponentially distributed time
with parameter

∑L
l=1 µ

l
n +

∑R
r=1 λ

r
n and then

jumps to n − i with probability µin/(
∑L

l=1 µ
l
n +

∑R
r=1 λ

r
n),

i = 1, ..., L
or to n + j with probability λjn/(

∑L
l=1 µ

l
n +

∑R
r=1 λ

r
n), j =

1, ..., R.
{Nt}t≥0 is called a birth and death process with bounded jump-
s in random environment ((L,R) BDPRE in short).

Pω : quenched probability;

P : annealed probability.



Condition D

(D1) (Ω,F ,P, θ) forms a stationary and ergodic system.

(D2) the measure P is uniformly elliptic, that is,

P
(
ε < µl0, λ

r
0 < M, 1 ≤ l ≤ L, 1 ≤ r ≤ R

)
= 1

for some small ε > 0 and large M > 0.



Define T1 = inf[t > 0 : Nt > 0].

Theorem (LLN for (L,R) BDPRE)

Suppose that conditions (D) holds and γR ≥ 0. Then
(a) ET1 <∞⇒ limt→∞

Nt
t = vP > 0, P -a.s.;

(b) ET1 =∞⇒ limt→∞
Nt
t = 0, P -a.s..

vP =

E
(∑R

r=1

∑
k≤0Eθ−kω

(∑Uk
j=1 ξkj |NT1 = r

)(∑L
l=1(−l)µl0 +

∑R
r=1 rλ

r
0

))
∑R

r=1E(T1|NT1 = r)
,

Uk := #{n : Nτn = k, τn < T1},
Pω(ξkj > t) = e−(

∑L
l=1 µ

l
k+

∑R
r=1 λ

r
k)t, t ≥ 0.



Theorem (LLN for (2,2) BDPRE)

Let π(ω) and D(ω) be certain functions of ω. Suppose L = R = 2
and γR ≥ 0. Then P-a.s.,

(a) E(π(ω)) <∞⇒ limt→∞
Nt
t =

E(π(ω)(2λ20+λ10−µ10−2µ20))
E(D(ω)) ;

(b) E(π(ω)) =∞⇒ limt→∞
Nt
t = 0.

Idea: Let {Xn} = {Nnh} be h-skeleton process of {Nt}.
{Xn} is a RWRE with unbounded jumps.

LLN of {Xn} ⇒ LLN of {Nt}.
Using the branching structure for (L, R) random walk, we calcu-
late

Eθ−kω

( Uk∑
j=1

ξkj |NT1 = r
)

and

R∑
r=1

Eω(T1|NT1 = r),

which lead to the explicit velocity of LLN of {Nt}.
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