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@ Branching structure within Random walk path

@ Some applications of the branching structure

® RWRE with unbounded jumps and BDP with
bounded jumps in random environment
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Branching process in (1,1) RW

e Harris (1952),
(1,1) random walk <> Galton-Watson tree.
@ Dwass (1975),
Branching process (with immigration) in simple RW.
e Kesten, Kozlov and Spitzer (1975),
Branching process <> non-homogeneous (1,1) RW;
Stable law for RWRE.

@ Rogers (1984), by using branching structure, showed that
local time of (1,1) RW converges to Brownian local time.
e Gantert and Shi (2002), Many visit to a single site by RWRE.

@ Zeitouni (2004), Invariant density
related to “the environment viewed from particle”.

Afanasyev (2014) proved a conditional Ritter Theorem.




Branching Structure for (1,1) RW

Suppose limsup,,_, .. X;, = oo. Define T} = inf{n : X,, > 0}.
Let Uy = 1, and for i < 0,

UZ‘:#{OSTL<T1 :Xn=i+1,Xn+1=i}.
Then Uy, U_1, ... forms a branching process with

P(Ui,1 == kZ|Ul == 1) == qui, k= 0, 1,2,
o “K ~ ff
-2 \( \l \1 N N ;[
(1) RwW

[KKS75] Kesten, H., Kozlov, M.V. and Spitzer, F., A limit law for

random walk in a random environment, Compos. Math.,
Vol.30, pp 145-168, 1975
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Branching structure for (L,R) RW?
(Multitype branching process)
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(L, R) RwW

Key indicated there maybe some multitype branching process
within (L,1) RW path, but he did not give the construction.

[K84] Key, E.S., Limiting distributions and regeneration times for

multitype branching processes within immigration in a ran-

dom environment, Ann. Probab. 15(1), 344 - 353, pp 1987



e Hong and Wang (2013):

Branching structure for (L,1) RW

e Hong and Zhang (2010):

Branching structure for (1,R) RW

e Wang and Hong (2014):

[HW13]

[HZ10]

[HW14]

Branching structure for (L,R) RW

Hong, W.M. and Wang, H.M., Intrinsic branching structure within
(L-1) random walk in random environment and its applications,
Infin. Dimens. Anal. Quantum Probab. Relat. Top., Vol. 16,
1350006 [14 pages], 2013

Hong, W.M. and Zhang, L., Branching structure for the transient
(1; R)-random walk in random environment and its applications,
Infin. Dimens. Anal. Quantum Probab. Relat. Top., Vol. 13(4),
pp 589-618, 2010

Wang, H.M. and Hong, W.M., Intrinsic branching structure within
random walk on Z, Theory Probab. Appl., Vol. 58(4), pp 640-659,
2014



(L,R) random walk

Fix 1< L,ReZ.

Let A={-L,—-L+1,.., R}/{0}.

Environment: w = (w;);cz where for i € Z, w; = (w;(1))1en
is a probability measure on i + A.

Random walk {X,} : a Markov Chain, starting from 0,
with transition probabilities

Pw(Xn—H =1 +l|Xn = ’L) = wz-(l), l e A.

WiktT)

Yo X X xH 2R




Branching structure for (L,1) RW

Consider (L, 1) RW. Suppose limsup,, ,,, X, = 0o. Define
T = inf{n > 0: X,, > 0}.
Let Uy=e; and for: <0, I =1,..., L,
Up=#{0<n<T: X, >4, Xy =i—1+1}.

Set
U= U, ..., UiL).

Ui1 Ui, 2

1+ 2

t+1 \ \ -
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Figure. The figure illustrates the offspring born to a type-1 particle.
It has 4 type-1 children and 3 type-2 children.



i+ 2 v
t+1 % a4

. \
- NN N N N W

- \ NN

Figure. The figure illustrates the offspring born to a type-1 particle.
It has 4 type-1 children and 3 type-2 children.

Pw (Ui—l = (ul, ,uL)‘Ul = el)
o (ul + ...+ UL)'
o ug!eup)!

wil = 1) i (— L) i (1),
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Figure. The figure illustrates the offspring born to a type-2 particle.
It gives birth to a type-1 child with probability one. Then it gives
births to certain particles with common distribution as type-1 particles.



142

TN /

PP N N W O N W N WA

- \ NN

Figure. The figure illustrates the offspring born to a type-2 particle.
It gives birth to a type-1 child with probability one. Then it gives
births to certain particles with common distribution as type-1 particles.

For L > 1> 2,

P, (Ui—l = (ul, vy L4y q, ...,uL)‘Ui = eg)
~ (ur .. Fup)!

o — u P o — u .
g wi(—=1)" - wi(—L)"Fw;(1).



Theorem(Hong and Wang 2013)

Suppose that limsup,,_,., X, = 0o. Then Uy, U_1,U_9, ... forms
an L-type branching process whose offspring distributions are

Pw(Uifl = (’Uq, ...,’UJL)}UZ- = @1)
_(ut o du)

o — u P S — u .
ul- g wi(=1)" -+ wi(=L)* wi(1),

and for 2 <1 <L,

F, (Uifl = (u17 caog 1+ Up—1, ,UL)’Ul = el)
up + ... +up)!
= R L )

Furthermore,

Ty =1+> Ui(2,1,..,1)"
<0




Branching Structure for (2,2) RW

Consider (2,2) RW. Suppose limsup,,_, . X, = co. Define
Ty =inf{n > 0: X, > 0}.

Ai 1 Aie Aijs Bi1Bi2 Bis Ci,1 Ci2 Ci3
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Figure. The figure illustrates type A, B and C excursions at i.
We draw only the first step and the last step, omitting all things
between these two steps. Between these two steps, the walk walks
below i — 1.



Define for : < 0 and j =1, 2, 3,
A; ; = #{ A, excursions before T} },

B; ; = #{B;; excursions before T},
Ci; = #{C; ; excursions before T} },
Ui = (Ai1, Aia, Ais, Bit, Big, B3, Ci1, Cia, Ci3).



Define for : < 0 and j =1, 2, 3,
A; ; = #{ A, excursions before T} },

B; ; = #{B;; excursions before T},
Ci; = #{C; ; excursions before T} },
Ui - (Ai717 Ai,?? Ai,37 Bi,17 B’i,Q; Bi,37 Ci,l, C@Q, Ci’g).

Theorem(Hong and Wang 2014)

Suppose that limsup,,_,. X, = oco. Then {U;};<1 is a 9-
type non-homogeneous branching processes whose immigra-
tion law and offsprings distributions will be stated below.




Theorem

Suppose that limsup,,_, . X, = co. Then

Ti=1+) Ui(2,2,1,1,1,0,2,2,1),

1<0

ENT) =1+ wQ-- Qi(2,2,1,1,1,0,2,2,1)"

1<0

where Q; € R x R?, u; € R? depending only on w.




Define for k < 1,
fi(i,i+ 1) = P¥(the walk hits (i, 00) at i + 1);
fi(i, i+ 2) = P¥(the walk hits (i, 00) at i + 2).

Define indexes o1, o3 and a2 correspondingly to A;1 A; 3,

and ALQ.



Define for k < 1,
fi(i,i+ 1) = P¥(the walk hits (i, 00) at i + 1);
fi(i, i+ 2) = P¥(the walk hits (i, 00) at i + 2).

Define indexes o1, o3 and a2 correspondingly to A;1 A; 3,
and A; 2. Let

o =) Y O -2 )

nlm
n,m>0
X [wi—1(=2) fims(i — 2,0 — 1)]"wi1 (1),
Q3 1= wi(—l) Z M[wi_l(—l)fi_g(i — 2,i — 1)]”

nlm!
n,m>0
X wi—1(=2) fi—3(i — 2,1 — 1)]"w;—1(2),
@i = wi(—1) — i1 — a; 3.



_ wi(—l)wi_l(l)

L—wisi(=1)fica(i — 2,0 = 1) —wi—1(=2) fi—s(i — 2,i — 1)’
_ wi(—l)wi_l(Q)
’ 1-— wz‘_l(—l)fi_g(i - Q,i - 1) - wi_l(—2)fi_3(i — Q,i - 1)7

;= wi(—1) —a;1 — ;3.

)

Define similarly 3;1, Bi2, B3, Vi1, Viz2, Vi3



wz( 1)(,«]1 1(1)

o l—wia (D) fio(i—2,i— 1) —wi1(=2)fi3(i —2,i — 1)’
wz( 1)(,«]Z 1(2)

)

S l—wina (R fica (6= 2,0 = 1) —wi1(=2) fis (i = 2,0 — 1)

;= wi(—1) —a;1 — ;3.

)

Define similarly 3;1, Bi2, B3, Vi1, Viz2, Vi3

Ai,l < Qy1, «41',2 0y 2, Ai,B <0G 3;
Bi1 < Bijg, Big < Bi2, Biz + Bi3;

Cip < i1, Ci2 < vi2, Cig < Y3



Immigration Law

The imaginary step A1 Aia A
’ /
: ) [ [/
/

-
-

Figure. Adding the imaginary step {1 — 0}, the path before T}
forms a type A particle, it may be a A; 1, A 2 or A; 3 excursion.

Q11
P,(Ui=ey)=P)(A; =1)= ’ :
w(U1 ) L(AL ) a1 +ai2tars
Pu(Ur=e3) =P)(A13=1) = L3 s (1)
’ a1 toar2+ars
12

(U1 =) o(Ava ) a1+ a2+ a3



(a) Offspring distributions of A; 11, Aiy1.3,Cit1,1 and Ciy1 3

particles
Ci+l, 1 C’i+1, 3
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Figure. A;i1,1, Ait1,3, Cit1,1 and Cij11 3 share the same off-
spring distribution. They could only give births to A; 1, A; 2,
B; 1 and B; 2 particles.
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Figure. A;i1,1, Ait1,3, Cit1,1 and Cij11 3 share the same off-
spring distribution. They could only give births to A; 1, A; 2,
B; 1 and B; 2 particles.

With Cl =1- Q51 — Q2 — ﬁi,l — ﬁ@g, for k = 1, 3, 7,9,
P(S(Ul = (aa b7 07 ) da 07 07 07 0)‘U1+1 = ek)

(a+b+c+d)!
- albleld! ai 1082651 815G




(b) Offspring distributions of A;; 2, and C;; 2 particles

Cit1,2 Ait1,2
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la-

Figure. Offsprings of A;;1,2, Ci+1,2. Before the last step hap-
pens, with probability 1, a B; 3 or A; 3 excursion would be born.
;3
i3+ Big’
Bi3
a3+ Bis

PY(Aiz =1|Uit1 = ez or eg) =

P‘S(BZ‘73 = 1}U¢+1 — €9 or eg) =



PY(U; = (a,b,1,¢,d,0,0,0,0)|Uir1 = e; or eg)

_(a+bte+d)! o oy e aa i3

= albleld! Q; 105 2 i,lﬁig@am +5i,3’
PB(Ui = (a,b,0,c,d, 1,0,0,0)‘Ui+1 = ey or eg)

_(atbtet+d)! , i3

d
Q1% 2 ic,lﬁi,QCi

alblcld! ;3 + Bi,3 ’



(c) Offspring distributions of B;;1 1, and B, 3 particles
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Figure. The offsprings of B;;1,1 and B,y 3. Since at last, the
walk jumps from 7 to some position above i, before the last step
happens, it must return to ¢ from below. Therefore with proba-
bility 1, a C; 1 or a C; 2 excursion would be born.



(d) Offspring distribution of B, > particles
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Figure. The offsprings (case 1) of B;11 2 excursion. The walk never
visited ¢ between the first and the last step. Therefore, only a

type C;, 3 excursion would be born.
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Figure. The offsprings (case 2) of B;11 2 excursion. Between the
first and the last step, the walk did visit i. Therefore P2(C; 1 +
Ci,o= 1)=1and Pg(.Ai’g + B3 = 1) =1






Yi,3
6i+1,2 ’

Pg([]z = (O, ...,0, 1)|Ui+1 = 65) =

P°(U; = (a,b,1,¢,d,0,1,0,0)|U;41 = e

o +

_(at+b+c+d) , 4 e La (Bit12 —7¥i3)7Yi10i3

o albleld! ai’lai’Qﬂi’lﬂi’QQ Bit1,2(vi1 +7i2) (3 + Bi3) ’
PS(UZ = (a7 ba 17 c, d7 07 Oa 17 0)‘U7,+1 - e5)

_(at+b+c+d) , 4 e La (Bit12 —7i3)7Yi203

o albleld! ai’lai’Qﬂi’lﬂi’QQ Bit1,2(vi1 +7i2) (a3 + Bi3) ’
P(S(UZ = (a’7 ba Oa c, d7 17 17 07 O)‘Ul-‘rl = e5)

_(atb+c+ d)!af‘ ol B Bl (Bi+1,2 — 7i,3)7%i,18i,3
1,1%4,2M4,1M4,2 ZﬂiJr]’Q('Yi’l +'Y7,"2)(Oéqj’3+ﬁi’3)’

alblcld!
P(S(UZ = (a’7 ba Oa c, d7 17 Oa 17 O)‘Ul-‘rl = 65)

_latbtretd)! ., B 3 (Bit1,2 — 7%i,3) 71,283
albleld! 1,1%%4,2M4,1M4,2 lﬂi+1,2('7i,1+'Y7;,2)(04i,3+5i,3)




Random walk in random environment

Wxd Wx Wy W

W

x| X 7;+z
ch:(qu)uez) QA Preb. Meas. gn Z

W= (v, Wy , Wx, Wt , Wﬂz,“.)

o ergodic sequence,
/f“\“’,".
% g
Po( S = %3] Sn=x) = Wiy

A4



) : collection of w = (wy)zez Where for € Z, wy = (Way)yez is
a probability measure on Z.

0 : shift operator on € defined by (6w), := wWyt1.
F : Borel o-algebra on {2.
[P : a probability measure on (€2, F), being i.i.d. or ergodic.

For a realization of w, consider a Markov chain {S),},>0 with
transitional probabilities

P20 (Sn41 = a+y|Sp = &) = wyy for all n > 0, P2°(Sy = z) = 1.

{S,} : random walk (with unbounded jumps) in random en-
vironment w.

P : the quenched law.
pro(.) = [ P2(-)P(dw) : the annealed law.



Some applications of Branching Structure
for random walk

If for some 1 < L,R € Z,
P(woy =0, for y < —L and y > R) = 1,
{Sn} is called RWRE with bounded jumps ((L,R) RWRE).

Wix(r)

X-L X X xH X2




Some applications of Branching Structure
for random walk
If for some 1 < L,R € Z,
P(woy =0, for y < —L and y > R) = 1,
{Sn} is called RWRE with bounded jumps ((L,R) RWRE).

W1
WxCL)
X-L X1 xY XHR

Wang (2013) prove the stable law for (L,1) RWRE, partially
generalizing Kesten, Kozlov and Spitzer (1975). J




Bremont (2009) proved a LLN for (L, R) RWRE, but for
min{L, R} > 2, no explicit velocity was given.
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Bremont (2009) proved a LLN for (L, R) RWRE, but for
min{L, R} > 2, no explicit velocity was given.

Wang and Hong (2014) reproved the LLN and gave explicitly
the velocity by using the branching structure of (L, R) RWRE.

Hong, Zhou and Zhao (2014) gave the explicit stationary distri-
bution of the (L, 1)-reflecting random walk by using the (L, 1)
branching structure.

v

Hong and Shun (2013) proved the renewal theorem for (L, 1)
RWRE.

y

Wang (20147) proved the LLN for BDP with bounded jumps in

random environment with explicit velocity.

v

Hong and Yang (20147") showed the convergence of the local time
of (1, L) RW to Brownian local time.

v




RWRE with unbounded jumps

Up to our knowledge, there are only 3 papers, Andjel (1988),
Comets and Popov (2012), Wang (20141).



RWRE with unbounded jumps

Up to our knowledge, there are only 3 papers, Andjel (1988),
Comets and Popov (2012), Wang (20141).

Condition A

(A1) P is stationary and ergodic;

(A2) P-a.s. Y 2 Pu(Sn =y|So=x) >0, for all z,y € Z;
(A3) There exists some C' > 0 such that for all s > 0, P-a.s.

Z woj < Ce™*.

l7]>s

Andjel 1988, 0-1 law

Under condition (A), we have P(X, — o) = 1 or P(X,, —
—o0) =1 or P(X, is recurrent) = 1.




For p € N, let

Way, if 0 <yl <o,
Wgy = 0 if |y| > Q’
Wo0 + 2 yly)zp Ways 1 Y =

Let {S5} be random walk in truncated environment w?. Define

0 .CC) = Zl{STQL:x}
n=0

Condition B
(B1) P is stationary and ergodic;
(B2) P(wp; > €) =1 for some € > 0;
(B3) 3r > 0, > 1 such that for all s > 1, 37, o woy <757
(B4) 3 non-increasing g > 0 such that Y 2, kg(k) < co and a
finite o9 > 0 such that for all z <0 and o > og

P-as., ES(NL (@) < g(|al).

(“The strong uniform transience to the right”, it precludes the
existence of trap.)



Theorem(Comets and Popov 2012, LLN)

Suppose that Condition (B) is satisfied. Then for all o > po,

J v, > 0 such that
P

S
P-as. — — Ug;
n

moreover, there exists Q¢ < P such that v, = [, E3(57)dQ? and
Vp — Voo AS 0 — 00.




Theorem(Comets and Popov 2012, LLN)

Suppose that Condition (B) is satisfied. Then for all o > g,
J v, > 0 such that

S
P-as. — — vy;
n

moreover, there exists Q¢ < P such that v, = [, E3(Sf)dQ? and
Vp — Voo AS 0 — 00.

| A\

Remark

(B3) requires the uninform and integrable polynomial
tail of the jumps. The authors said “It is a challenging problem
to find weaker conditions that still permit to obtain LLN for
RWREs with unbounded jumps with only polynomial tails.”




Theorem(Comets and Popov 2012, LLN)

Suppose that Condition (B) is satisfied. Then for all o > g,
3 v, > 0 such that

S
P-as. — — vy;
n

moreover, there exists Q¢ < P such that v, = [, E3(Sf)dQ? and
Vp — Voo AS 0 — 00.

Remark

(B3) requires the uninform and integrable polynomial
tail of the jumps. The authors said “It is a challenging problem
to find weaker conditions that still permit to obtain LLN for
RWREs with unbounded jumps with only polynomial tails.”
(B4) is also called “the strong uniform transience to the
right”, it precludes the existence of trap. The authors said
“In particular, it would be especially interesting to substi-
tute the current condition by a weaker one; however, at
the moment we do not have any concrete results and /or plausible
conjectures which go in that direction.”




Condition C
(C1) P is stationary and ergodic.

(C2) There exists € > 0 such that P(wp; > ¢) = 1.
(C3) There exist small g9 > 0 and proper D > 0, such that P-a.s.,

woj < D|j|~EF=0).



Condition C
(C1) P is stationary and ergodic.

(C2) There exists € > 0 such that P(wp; > ¢) = 1.
(C3) There exist small g9 > 0 and proper D > 0, such that P-a.s.,

woj < D‘j‘i(SJFEO).

Define T'=inf{n >0: S5, >0}, U, = #{0<n < T: S, = k}.

Theorem(Wang 2014)

Suppose that Condition C holds and E(T) < co. Then

.S
P-as., lim — =vp >0
n—oo n

where
2 <Zfi1 > k<0 Bo-ru (UklST=i) ez jw0j>
S B(T157 = ) '

vp =




Remark

(1) We prove the LLN when the tails of the jumps decay polyno-
mially.

(2) We do not need the uniform transience condition (B4) used
in Comets and Popov 2012. However

(3) We don’t know how to calculate E2(T}), so we could not give
explicitly the velocity vp, except for some special case e.g.

P(woy =0 for all y > 2) = 1.




BDP with bounded jumps in random environment
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Space of Random Environment

L, R > 1 are two integers(jump size).

Q : collection of w = (wi)iez = (WF, ..., ub, ALy A ez,
P >0,i€Z, 1=1,...L,r=1,..,R.

F : Borel g-algebra on ).

0 : shift operator on Q defined by (6w); = w;y1.

[P : a probability measure on (€2, F) which is assumed to be
i.i.d. or sometimes stationary and ergodic.

Random environment w is a random element of €2 chosen
according to P.



(L,R) BDPRE

Given a realization of w,

let {N:}i>0 be a continuous time Markov chain,

which waits at a state n an exponentially distributed time
with parameter S°7 y/, + 327 A7 and then

jumps to m — i with probability u /(327 uh + S35 A7),
t=1,..,L

or to n +j with probability M /(30 ph + S A7), 5 =
1,... R.

{N:}i>0 1s called a birth and death process with bounded jump-
s in random environment ((L,R) BDPRE in short).

’

P, : quenched probability;
P : annealed probability.



Condition D

(D1) (Q, F,P,0) forms a stationary and ergodic system.
(D2) the measure P is uniformly elliptic, that is,

P(a<ug,Ag<M,1§Z§L,1gr§R):1

for some small € > 0 and large M > 0.



Define T} = inf[t > 0: N; > 0].

Theorem (LLN for (L,R) BDPRE)

Suppose that conditions (D) holds and 7z > 0. Then
(a )ET1<oo:hmt_>ooN =vp > 0, P-a.s.;
(b) ETy = 00 = limy_y0 5 N — 0, P-as..

vp =

E( SR Yco Boro( S0 5N = 1) (Shy (~0uh + £ 7))

>,y B(Ti|N = 1)
U :=#{n: N, =k,m, <T1},

Pw(fkj >t) = e_(Zlel B )‘z)t7 t>0.



Theorem (LLN for (2,2) BDPRE)

Let m(w) and D(w) be certain functions of w. Suppose L = R = 2

and yg > 0. Then P-a.s.,

. E(m(w)(2A24+Ag —pd —2p2
(a) E(7(w)) < 00 = limy—,0e Tt = () ]EO(D(S;))MO No));

(b) E(n(w)) = 00 = lim¢—,00 % =0.

Idea: Let {X,,} = {N,} be h-skeleton process of {INV;}.
{X,} is a RWRE with unbounded jumps.
LLN of {X,} = LLN of {N,}.

Using the branching structure for (L, R) random walk, we calcu-
late

Uy R
Eafkw<25kj|NT1 — T‘) and ZEW(Tl‘NTl = ’/”)7
J=1 r=1

which lead to the explicit velocity of LLN of {IV;}.
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