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Motivation
The sexual chromosomes (X and Y) are directly related with the gender of the
individuals:

Females (F) Males (M)

Y-chromosome:

→ Two alleles:
{

R original allele
r mutant allele → Individuals:

 F
MR
Mr

r mutant allele:
Male fertility problems: azoospermia, oligospermia, aspermia.
Reconstruct the history of paternal lineages.
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Population
Mating and Reproduction Phases

 F
MR
Mr

Mating Phase−−−−−−−−−→



ZR
Reproduction Phase−−−−−−−−−−−−−→

 F
MR
Mr (Mutation)

Zr
Reproduction Phase−−−−−−−−−−−−−→

{
F
Mr (No backmutation)

Model assumptions:

Discrete time model (non-overlapping generations)

Sexual reproduction

Two phases:
{

Reproduction phase
Mating phase
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Definition of the Model

González M., Gutiérrez C., Martínez R. (2012) Extinction conditions for Y-
linked mutant-allele through two-sex branching processes with blind mating
structure. Journal of Theoretical Biology 307,104-116, 2012.

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 6 / 35



The reproduction phase

Consider a sequence of i.i.d., non-negative and integer value random vectors

{(FRnl,MRnl,Mr(R)
nl ) : l = 1, 2, . . . , n = 0, 1, . . .}

Variables
FRnl : Number of females stemming from the lth R-couple in generation n
MRnl : Number of males stemming from the lth R-couple in generation n which have
preserved the original R-allele
Mr(R)

nl : Number of males stemming from the lth R-couple in generation n whose
alleles have mutated and now are of type r

pR
k = P(FRnl + MRnl + Mr(R)

nl = k), pR = {pR
k }k∈SR : reproduction law

α : probability for an offspring to be female (0 < α < 1)
β : probability of mutation (0 < β < 1)
mR : reproduction mean

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 7 / 35



The reproduction phase

Consider a sequence of i.i.d., non-negative and integer value random vectors

{(FRnl,MRnl,Mr(R)
nl ) : l = 1, 2, . . . , n = 0, 1, . . .}

Variables
FRnl : Number of females stemming from the lth R-couple in generation n
MRnl : Number of males stemming from the lth R-couple in generation n which have
preserved the original R-allele
Mr(R)

nl : Number of males stemming from the lth R-couple in generation n whose
alleles have mutated and now are of type r

pR
k = P(FRnl + MRnl + Mr(R)

nl = k), pR = {pR
k }k∈SR : reproduction law

α : probability for an offspring to be female (0 < α < 1)
β : probability of mutation (0 < β < 1)
mR : reproduction mean

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 7 / 35



The reproduction phase

Consider a sequence of i.i.d., non-negative and integer value random vectors

{(Frnl,Mr(r)
nl ) : l = 1, 2, . . . , n = 0, 1, . . .}

Variables

(Frnl,Mr(r)
nl ) : Number of females and males generated by the lth r-couple in

generation n

pr
k = P(Frnl + Mr(r)

nl = k), pr = {pr
k}k∈Sr : reproduction law

α : probability for an offspring to be female (0 < α < 1)
mr : reproduction mean
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The reproduction phase

The Y-linked Bisexual Branching Process is a bivariate sequence: {(ZRn,Zrn)}n≥0

Variables
ZRn : Total number of R-couples in the nth generation
Zrn : Total number of r-couples in the nth generation

For every n ≥ 0 and provided that the vector (ZRn,Zrn) is known:

FRn+1 =

ZRn∑
i=1

FRni, Frn+1 =

Zrn∑
j=1

Frnj and Fn+1 = FRn+1 + Frn+1

MRn+1 =

ZRn∑
i=1

MRni, Mrn+1 =

Zrn∑
j=1

Mr(r)
nj +

ZRn∑
i=1

Mr(R)
ni and Mn+1 = MRn+1 +Mrn+1
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The mating phase

From the vector (Fn+1,MRn+1,Mrn+1)  (ZRn+1,Zrn+1)

Mating mechanism: Perfect fidelity mating

ZRn+1 + Zrn+1 = min{Fn+1,Mn+1}

Blind mating structure:

? If Fn+1 ≥ Mn+1

ZRn+1 = MRn+1 and Zrn+1 = Mrn+1

? If Fn+1 < Mn+1

ZRn+1|(Fn+1,MRn+1,Mrn+1) ∼ Hyper(Fn+1,Mn+1,MRn+1)

Zrn+1 = Fn+1 − ZRn+1
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Rates of Growth
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Plot of Zrn/ZRn for several paths of a process when mr < (1− β)mR (left plot),
mr = (1− β)mR (middle plot), and mr > (1− β)mR (right plot).

We based the estimation on three cases:

mr ≤ (1− β)mR

{
mr = 0
mr > 0

mr > (1− β)mR
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Bayesian Inference
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Bayesian Inference

Parameters: θ = (mR, mr, α, β).

Sample: FMobs
N = {(Fn,MRn,Mrn), n = 1, . . . ,N}.

Methodology: Approximate Bayesian Computation (ABC).

Objective: Approximate the posterior distribution θ|FMobs
N
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Approximate Bayesian Computation

Likelihood-free sampler: Tolerance Rejection Algorithm

Let θ̃ = (α̃, β̃, m̃R, m̃r)
for i = 1 to m do
repeat
generate (α̃, β̃, φ) ∼ U(0, 1)
generate m̃r = 0 with probability φ or

m̃r ∼ π(mr) with probability 1− φ
generate m̃R ∼ π(mR),

generate FMN from the likelihood f (.|θ̃)
until ρ(FMN ,FMobs

N ) < ε

set θ(i) = θ̃
end for
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To evaluate the distance between the observed and the simulated data, we have
considered the Hellinger’s metric:

ρh(FMobs
N ,FMN) =

(
N∑

n=1

((
(Fobs)

1/2 − F1/2
)2

+

(
(Mobs

R )
1/2 −M1/2

R

)2
+
(
(Mobs

r )
1/2 −M1/2

r

)2
))1/2

For a given ε > 0, known as a tolerance level, the proposed algorithm provides
samples from π(θ | ρ(FMN ,FMobs

N ) ≤ ε) which is a good approximation to
π(θ | FMobs

N ) by using a small enough ε
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Simulated Example: Case mr = 0
 

Reproduction laws: Poisson
Metric: Hellinger
Parameters: mR = 4, mr = 0, α = 0.38, β = 0.2
Sample: FMobs

15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F 5 9 3 5 8 8 14 18 19 24 28 35 30 37 47
MR 10 10 11 13 10 11 18 21 35 31 54 50 41 56 48
Mr 1 4 1 0 2 1 4 2 6 11 13 12 17 16 21
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Simulated Example: Case mr = 0
 

Priors: Independent non-informative priors distributions

α ∼ U[0, 1] β ∼ U[0, 1]

Tolerance: ε = 0.0001 quantile of the distribution of the distances.
Posteriors: π(α | ρ(FM15,FMobs

15) ≤ ε) and π(β | ρ(FM15,FMobs
15) ≤ ε)
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Simulated Example: Case mr = 0
 

Priors: Independent priors distributions

mR ∼ U[0, 10] mr ∼ U[0, 10] with probability (1− φ)
mr = 0 with probability φ, φ ∼ U[0, 1]

Tolerance: ε = 0.0001 quantile of the distribution of the distances.
Posteriors: π(mR | ρ(FM15,FMobs

15) ≤ ε) and π(mr | ρ(FM15,FMobs
15) ≤ ε)
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Simulated Example: Case 0 < mr ≤ (1− β)mR
 

Reproduction laws: Poisson
Metric: Hellinger
Parameters: mR = 2.4, mr = 2.28, α = 0.45, β = 0.05
Sample: FMobs

15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F 22 25 31 32 34 27 38 32 32 35 45 63 80 85 96
MR 18 17 26 37 31 44 16 24 27 22 32 31 46 59 71
Mr 9 9 12 17 7 12 17 19 17 15 16 27 30 44 44
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Simulated Example: Case 0 < mr ≤ (1− β)mR
 

Priors: Independent non-informative priors distributions
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Simulated Example: Case 0 < mr ≤ (1− β)mR
 

Priors: Independent priors distributions

mR ∼ U[0, 10] mr ∼ U[0, 10] with probability (1− φ)
mr = 0 with probability φ, φ ∼ U[0, 1]
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Simulated Example: Case mr > (1− β)mR
 

Reproduction laws: Poisson
Metric: Hellinger
Parameters: mR = 3.2, mr = 4, α = 0.46, β = 0.005
Sample: FMobs

15

n 1 2 3 4 5 6 7 8 ... 15
F 14 26 60 59 94 178 313 539 ... 33579
MR 9 12 20 29 44 59 92 136 ... 2048
Mr 11 14 25 52 76 136 265 543 ... 37524
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Simulated Example: Case mr > (1− β)mR
 

Priors: Independent non-informative priors distributions

α ∼ U[0, 1] β ∼ U[0, 1]

Tolerance: ε = 0.0001 quantile of the distribution of the distances.
Posteriors: π(α | ρ(FM15,FMobs

15) ≤ ε) and π(β | ρ(FM15,FMobs
15) ≤ ε)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

α

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

β

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 23 / 35



Simulated Example: Case mr > (1− β)mR
 

Priors: Independent priors distributions

mR ∼ U[0, 10] mr ∼ U[0, 10] with probability (1− φ)
mr = 0 with probability φ, φ ∼ U[0, 1]

Tolerance: ε = 0.0001 quantile of the distribution of the distances.
Posteriors: π(mR | ρ(FM15,FMobs

15) ≤ ε) and π(mr | ρ(FM15,FMobs
15) ≤ ε)

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

y

mR

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

y

mr

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 24 / 35



Improving the Estimates
Additional Information in the last generation:

FMobs
N = {(FN ,MRN ,Mr(R)

N ,MrN)}.
Standardized Hellinger’s Metric

ρsh(FMobs
N ,FMN) =

 N∑
n=1

((Fobs

T obs

)1/2

−
(

F
T

)1/2
)2

+

((
Mobs

R

T obs

)1/2

−
(

MR

T

)1/2
)2

+

((
Mobs

r

T obs

)1/2

−
(

Mr

T

)1/2
)2
1/2

Weighted generations (γ ∈ (0, 1)):

ρ∗(FMobs
N ,FMN) = γρsh(FMobs

N ,FMN)

+(1− γ)


( Mr(R)obs

N

Mr(R)obs

N + MRobs
N

)1/2

−

(
Mr(R)

N

Mr(R)
N + MRN

)1/2
2


1/2
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Improving the Estimates of mr and β in the case
0 < mr ≤ (1− β)mR

 

Metric: Standardized Hellinger
Sample: FMobs

15 and Mr(R)obs

N = 3
γ = 0.5
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Improving the Estimates of mr and β in the case
0 < mr ≤ (1− β)mR

 

Metric: Standardized Hellinger
Sample: FMobs

15 and Mr(R)obs

N = 3
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Comparison

 

Hellinger
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Comparison
 

Hellinger
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Standardized Hellinger
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mR mr α β MSE
True Value 2.4 2.28 0.45 0.05
P.E. Hell. 4.22 0.14 0.46 0.37 1.9986

P.E. St. Hell 3.03 2.37 0.46 0.07 0.1014
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Improving the Estimate of β in the case mr > (1− β)mR

 

Metric: Standardized Hellinger

Sample: FMobs
15 and Mr(R)obs

N = 5
γ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

y

α

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

x

y

β

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 30 / 35



Improving the Estimate of β in the case mr > (1− β)mR
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Comparison
 

Hellinger
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Standardized Hellinger
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mR mr α β MSE
True Value 3.2 4 0.46 0.005
P.E. Hell. 5.05 3.7 0.46 0.29 0.8984

P.E. St. Hell 3.61 4.38 0.45 0.007 0.0781
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Conclusions
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Conclusions

1 A two-sex branching process has been introduced. It is a suitable model for
describing the evolution of a Y-linked gene and its mutations.

2 The aim of the work is to make inference about the parameters of the model
(including the special case of total infertility, mr = 0).

3 Bayesian inference could be easily made using Approximate Bayesian
Computation.

4 Introducing the prior distribution of mr as a mixture of a degenerated distribution
in 0 and of a uniform distribution allows a good approximation to the posterior
distributions of the parameters in the case mr = 0.

5 Introducing additional information, only in the last generation, and considering
Standardized Hellinger’s metric, it is possible to obtain a good approximation to
the posterior distributions of the parameters in any case.
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Thank you very much!

Acknowledgements:
This research has been supported by the Ministerio de Economía y Competividad of
Spain (grant MTM2012-31235), the Gobierno de Extremadura (grant GR10118) and
the FEDER.

Cristina Gutiérrez (University of Extremadura) ABC Methodology April 10th, 2015 35 / 35


	Motivation
	Definition of the Model
	Rates of Growth
	Bayesian Inference
	Conclusions

