

ABC Methodology for a Y-linked Two-Sex Branching Model

González, M.; Gutiérrez, C. and Martínez, R.

Department of Mathematics University of Extremadura Spain

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional

Una manera de hacer Europa

Cristina Gutiérrez (University of Extremadura)

ABC Methodology

Contents

1 Motivation

2 Definition of the Model

3 Rates of Growth

4 Bayesian Inference

Cristina Gutiérrez (University of Extremadura)

Motivation

Motivation

The sexual chromosomes (X and Y) are directly related with the gender of the individuals:

Females (F)

Males (M)

Y-chromosome:

r mutant allele:

- Male fertility problems: azoospermia, oligospermia, aspermia.
- Reconstruct the history of paternal lineages.

Population

Mating and Reproduction Phases

Model assumptions:

- Discrete time model (non-overlapping generations)
- Sexual reproduction

• Two phases: Reproduction phase
 Mating phase

Definition of the Model

González M., Gutiérrez C., Martínez R. (2012) *Extinction conditions for Y-linked mutant-allele through two-sex branching processes with blind mating structure.* Journal of Theoretical Biology 307,104-116, 2012.

Consider a sequence of i.i.d., non-negative and integer value random vectors

$$\{(FR_{nl}, MR_{nl}, Mr_{nl}^{(R)}) : l = 1, 2, \dots, n = 0, 1, \dots\}$$

Variables

 FR_{nl} : Number of females stemming from the l^{th} *R*-couple in generation *n* MR_{nl} : Number of males stemming from the l^{th} *R*-couple in generation *n* which have preserved the original *R*-allele $Mr_{nl}^{(R)}$: Number of males stemming from the l^{th} *R*-couple in generation *n* whose alleles have mutated and now are of type *r*

$$p_k^R = P(FR_{nl} + MR_{nl} + Mr_{nl}^{(R)} = k), \ p^R = \{p_k^R\}_{k \in S^R}$$
: reproduction law

 $lpha:\,$ probability for an offspring to be female (0<lpha<1)

 β : probability of mutation ($0 < \beta < 1$)

 m_R : reproduction mean

Consider a sequence of i.i.d., non-negative and integer value random vectors

$$\{(FR_{nl}, MR_{nl}, Mr_{nl}^{(R)}) : l = 1, 2, \dots, n = 0, 1, \dots\}$$

Variables

 FR_{nl} : Number of females stemming from the l^{th} *R*-couple in generation *n* MR_{nl} : Number of males stemming from the l^{th} *R*-couple in generation *n* which have preserved the original *R*-allele $Mr_{nl}^{(R)}$: Number of males stemming from the l^{th} *R*-couple in generation *n* whose alleles have mutated and now are of type *r*

$$p_k^R = P(FR_{nl} + MR_{nl} + Mr_{nl}^{(R)} = k), \ p^R = \{p_k^R\}_{k \in S^R}$$
: reproduction law

- α : probability for an offspring to be female ($0 < \alpha < 1$)
- β : probability of mutation (0 < β < 1)
- m_R : reproduction mean

Consider a sequence of i.i.d., non-negative and integer value random vectors

$$\{(Fr_{nl}, Mr_{nl}^{(r)}): l = 1, 2, \dots, n = 0, 1, \dots\}$$

Variables

 $(Fr_{nl}, Mr_{nl}^{(r)})$: Number of females and males generated by the l^{th} *r*-couple in generation *n*

 $p_k^r = P(Fr_{nl} + Mr_{nl}^{(r)} = k), \ p^r = \{p_k^r\}_{k \in S^r}$: reproduction law

 α : probability for an offspring to be female ($0 < \alpha < 1$)

 m_r : reproduction mean

The Y-linked Bisexual Branching Process is a bivariate sequence: $\{(ZR_n, Zr_n)\}_{n\geq 0}$

Variables

 ZR_n : Total number of *R*-couples in the *n*th generation Zr_n : Total number of *r*-couples in the *n*th generation

For every $n \ge 0$ and provided that the vector (ZR_n, Zr_n) is known:

$$FR_{n+1} = \sum_{i=1}^{ZR_n} FR_{ni}, \quad Fr_{n+1} = \sum_{j=1}^{Zr_n} Fr_{nj} \text{ and } F_{n+1} = FR_{n+1} + Fr_{n+1}$$

$$MR_{n+1} = \sum_{i=1}^{ZR_n} MR_{ni}, \quad Mr_{n+1} = \sum_{j=1}^{Zr_n} Mr_{nj}^{(r)} + \sum_{i=1}^{ZR_n} Mr_{ni}^{(R)} \text{ and } M_{n+1} = MR_{n+1} + Mr_{n+1}$$

The mating phase

• From the vector $(F_{n+1}, MR_{n+1}, Mr_{n+1}) \rightsquigarrow (ZR_{n+1}, Zr_{n+1})$

• Mating mechanism: Perfect fidelity mating

$$ZR_{n+1} + Zr_{n+1} = \min\{F_{n+1}, M_{n+1}\}$$

• Blind mating structure:

- * If $F_{n+1} \ge M_{n+1}$ $ZR_{n+1} = MR_{n+1}$ and $Zr_{n+1} = Mr_{n+1}$
- $\star \text{ If } F_{n+1} < M_{n+1}$

 $ZR_{n+1}|(F_{n+1}, MR_{n+1}, Mr_{n+1}) \sim Hyper(F_{n+1}, M_{n+1}, MR_{n+1})$

$$Zr_{n+1} = F_{n+1} - ZR_{n+1}$$

The mating phase

• From the vector $(F_{n+1}, MR_{n+1}, Mr_{n+1}) \rightsquigarrow (ZR_{n+1}, Zr_{n+1})$

• Mating mechanism: Perfect fidelity mating

$$ZR_{n+1} + Zr_{n+1} = \min\{F_{n+1}, M_{n+1}\}$$

Blind mating structure:

* If $F_{n+1} \ge M_{n+1}$

$$ZR_{n+1} = MR_{n+1}$$
 and $Zr_{n+1} = Mr_{n+1}$

 $\star \text{ If } F_{n+1} < M_{n+1}$

 $ZR_{n+1}|(F_{n+1}, MR_{n+1}, Mr_{n+1}) \sim Hyper(F_{n+1}, M_{n+1}, MR_{n+1})$

$$Zr_{n+1} = F_{n+1} - ZR_{n+1}$$

The mating phase

- From the vector $(F_{n+1}, MR_{n+1}, Mr_{n+1}) \rightsquigarrow (ZR_{n+1}, Zr_{n+1})$
- Mating mechanism: Perfect fidelity mating

$$ZR_{n+1} + Zr_{n+1} = \min\{F_{n+1}, M_{n+1}\}$$

• Blind mating structure:

* If
$$F_{n+1} \ge M_{n+1}$$

 $ZR_{n+1} = MR_{n+1}$ and $Zr_{n+1} = Mr_{n+1}$
* If $F_{n+1} < M_{n+1}$
 $ZR_{n+1}|(F_{n+1}, MR_{n+1}, Mr_{n+1}) \sim Hyper(F_{n+1}, M_{n+1}, MR_{n+1})$

$$Zr_{n+1} = F_{n+1} - ZR_{n+1}$$

Rates of Growth

Plot of Zr_n/ZR_n for several paths of a process when $m_r < (1 - \beta)m_R$ (left plot), $m_r = (1 - \beta)m_R$ (middle plot), and $m_r > (1 - \beta)m_R$ (right plot).

We based the estimation on three cases:

•
$$m_r \leq (1-\beta)m_R \begin{cases} m_r = 0\\ m_r > 0 \end{cases}$$

•
$$m_r > (1-\beta)m_R$$

Bayesian Inference

Bayesian Inference

- Parameters: $\theta = (m_R, m_r, \alpha, \beta)$.
- Sample: $\mathcal{FM}_N^{\text{obs}} = \{(F_n, MR_n, Mr_n), n = 1, \dots, N\}.$
- Methodology: Approximate Bayesian Computation (ABC).
- Objective: Approximate the posterior distribution $\theta | \mathcal{FM}_{\mathcal{N}}^{obs}$

Approximate Bayesian Computation

Likelihood-free sampler: Tolerance Rejection Algorithm

```
Let \widetilde{\theta} = (\widetilde{\alpha}, \widetilde{\beta}, \widetilde{m_R}, \widetilde{m_r})
for i = 1 to m do
repeat
generate (\widetilde{\alpha}, \widetilde{\beta}, \phi) \sim U(0, 1)
generate \widetilde{m_r} = 0 with probability \phi or
\widetilde{m_r} \sim \pi(m_r) with probability 1 - \phi
generate \widetilde{m_R} \sim \pi(m_R),
generate \mathcal{FM}_{\mathcal{N}} from the likelihood f(.|\widetilde{\theta})
until \rho(\mathcal{FM}_{\mathcal{N}}, \mathcal{FM}_{\mathcal{N}}^{\text{obs}}) < \epsilon
set \theta^{(i)} = \widetilde{\theta}
end for
```


• To evaluate the distance between the observed and the simulated data, we have considered the Hellinger's metric:

$$\rho_h(\mathcal{FM}_N^{\text{obs}}, \mathcal{FM}_N) = \left(\sum_{n=1}^N \left(\left((F^{\text{obs}})^{1/2} - F^{1/2} \right)^2 + \left((M_R^{\text{obs}})^{1/2} - M_R^{1/2} \right)^2 + \left((M_r^{\text{obs}})^{1/2} - M_r^{1/2} \right)^2 \right) \right)^{1/2}$$

For a given ε > 0, known as a tolerance level, the proposed algorithm provides samples from π(θ | ρ(FM_N, FM_N^{obs}) ≤ ε) which is a good approximation to π(θ | FM_N^{obs}) by using a small enough ε

Simulated Example: Case $m_r = 0$

- Reproduction laws: Poisson
- Metric: Hellinger
- Parameters: $m_R = 4$, $m_r = 0$, $\alpha = 0.38$, $\beta = 0.2$
- Sample: $\mathcal{FM}_{15}^{\text{obs}}$

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
F	5	9	3	5	8	8	14	18	19	24	28	35	30	37	47
MR	10	10	11	13	10	11	18	21	35	31	54	50	41	56	48
Mr	1	4	1	0	2	1	4	2	6	11	13	12	17	16	21

Simulated Example: Case $m_r = 0$

• Priors: Independent non-informative priors distributions

$$\alpha \sim U[0,1] \quad \beta \sim U[0,1]$$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(\alpha \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$ and $\pi(\beta \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$

Simulated Example: Case $m_r = 0$

• Priors: Independent priors distributions

$$m_R \sim U[0, 10]$$
 $m_r \sim U[0, 10]$ with probability $(1 - \phi)$
 $m_r = 0$ with probability ϕ , $\phi \sim U[0, 1]$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(m_R \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$ and $\pi(m_r \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$

Simulated Example: Case $0 < m_r \leq (1 - \beta)m_R$

- Reproduction laws: Poisson
- Metric: Hellinger
- Parameters: $m_R = 2.4, m_r = 2.28, \alpha = 0.45, \beta = 0.05$
- Sample: \mathcal{FM}_{15}^{obs}

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
F	22	25	31	32	34	27	38	32	32	35	45	63	80	85	96
MR	18	17	26	37	31	44	16	24	27	22	32	31	46	59	71
Mr	9	9	12	17	7	12	17	19	17	15	16	27	30	44	44

Simulated Example: Case $0 < m_r \leq (1 - \beta)m_R$

• Priors: Independent non-informative priors distributions

$$\alpha \sim U[0,1] \quad \beta \sim U[0,1]$$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(\alpha \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$ and $\pi(\beta \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$

Simulated Example: Case $0 < m_r \leq (1 - \beta)m_R$

• Priors: Independent priors distributions

$$m_R \sim U[0, 10]$$
 $m_r \sim U[0, 10]$ with probability $(1 - \phi)$
 $m_r = 0$ with probability ϕ , $\phi \sim U[0, 1]$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(m_R \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$ and $\pi(m_r \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$

Simulated Example: Case $m_r > (1 - \beta)m_R$

- Reproduction laws: Poisson
- Metric: Hellinger
- Parameters: $m_R = 3.2$, $m_r = 4$, $\alpha = 0.46$, $\beta = 0.005$
- Sample: \mathcal{FM}_{15}^{obs}

n	1	2	3	4	5	6	7	8	 15
F	14	26	60	59	94	178	313	539	 33579
MR	9	12	20	29	44	59	92	136	 2048
Mr	11	14	25	52	76	136	265	543	 37524

Simulated Example: Case $m_r > (1 - \beta)m_R$

• Priors: Independent non-informative priors distributions

$$\alpha \sim U[0,1] \quad \beta \sim U[0,1]$$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(\alpha \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$ and $\pi(\beta \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{\text{obs}}) \leq \varepsilon)$

Simulated Example: Case $m_r > (1 - \beta)m_R$

• Priors: Independent priors distributions

$$m_R \sim U[0, 10]$$
 $m_r \sim U[0, 10]$ with probability $(1 - \phi)$
 $m_r = 0$ with probability ϕ , $\phi \sim U[0, 1]$

- Tolerance: $\varepsilon = 0.0001$ quantile of the distribution of the distances.
- Posteriors: $\pi(m_R \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$ and $\pi(m_r \mid \rho(\mathcal{FM}_{15}, \mathcal{FM}_{15}^{obs}) \leq \varepsilon)$

Improving the Estimates

• Additional Information in the last generation:

$$FM_N^{\text{obs}} = \{(F_N, MR_N, Mr_N^{(R)}, Mr_N)\}.$$

• Standardized Hellinger's Metric

$$\rho_{sh}(\mathcal{FM}_N^{\text{obs}}, \mathcal{FM}_N) = \left(\sum_{n=1}^N \left(\left(\left(\frac{F^{\text{obs}}}{T^{\text{obs}}} \right)^{1/2} - \left(\frac{F}{T} \right)^{1/2} \right)^2 + \left(\left(\frac{M_R^{\text{obs}}}{T^{\text{obs}}} \right)^{1/2} - \left(\frac{M_R}{T} \right)^{1/2} \right)^2 + \left(\left(\frac{M_r^{\text{obs}}}{T^{\text{obs}}} \right)^{1/2} - \left(\frac{M_r}{T} \right)^{1/2} \right)^2 \right) \right)^{1/2}$$

• Weighted generations ($\gamma \in (0, 1)$):

$$\rho^{*}(\mathcal{FM}_{N}^{obs}, \mathcal{FM}_{N}) = \gamma \rho_{sh}(\mathcal{FM}_{N}^{obs}, \mathcal{FM}_{N}) + (1-\gamma) \left(\left(\left(\frac{Mr_{N}^{(R)obs}}{Mr_{N}^{(R)obs} + MR_{N}^{obs}} \right)^{1/2} - \left(\frac{Mr_{N}^{(R)}}{Mr_{N}^{(R)} + MR_{N}} \right)^{1/2} \right)^{2} \right)^{1/2}$$

Improving the Estimates of m_r and β in the case $0 < m_r \le (1 - \beta)m_R$

- Metric: Standardized Hellinger
- Sample: *FM*^{obs}₁₅ and *Mr*^{(*R*)obs}_N = 3
 γ = 0.5

Improving the Estimates of m_r and β in the case $0 < m_r \le (1 - \beta)m_R$

- Metric: Standardized Hellinger
- Sample: $\mathcal{FM}_{15}^{\text{obs}}$ and $Mr_N^{(R)\text{obs}} = 3$ • $\gamma = 0.5$

Comparison

Comparison

	m_R	m_r	$\mid \alpha$	β	MSE
True Value	2.4	2.28	0.45	0.05	
P.E. Hell.	4.22	0.14	0.46	0.37	1.9986
P.E. St. Hell	3.03	2.37	0.46	0.07	0.1014

Improving the Estimate of β in the case $m_r > (1 - \beta)m_R$

- Metric: Standardized Hellinger
- Sample: \mathcal{FM}_{15}^{obs} and $Mr_N^{(R)obs} = 5$
- $\gamma = 0.5$

Improving the Estimate of β in the case $m_r > (1 - \beta)m_R$

- Metric: Standardized Hellinger
- Sample: \mathcal{FM}_{15}^{obs} and $Mr_N^{(R)obs} = 5$
- $\gamma = 0.5$

Comparison

	m_R	m_r	α	β	MSE
True Value	3.2	4	0.46	0.005	
P.E. Hell.	5.05	3.7	0.46	0.29	0.8984
P.E. St. Hell	3.61	4.38	0.45	0.007	0.0781

- A two-sex branching process has been introduced. It is a suitable model for describing the evolution of a Y-linked gene and its mutations.
- The aim of the work is to make inference about the parameters of the model (including the special case of total infertility, $m_r = 0$).
- Bayesian inference could be easily made using Approximate Bayesian Computation.
- Introducing the prior distribution of m_r as a mixture of a degenerated distribution in 0 and of a uniform distribution allows a good approximation to the posterior distributions of the parameters in the case $m_r = 0$.
- Introducing additional information, only in the last generation, and considering Standardized Hellinger's metric, it is possible to obtain a good approximation to the posterior distributions of the parameters in any case.

- A two-sex branching process has been introduced. It is a suitable model for describing the evolution of a Y-linked gene and its mutations.
- The aim of the work is to make inference about the parameters of the model (including the special case of total infertility, $m_r = 0$).

Bayesian inference could be easily made using Approximate Bayesian Computation.

- Introducing the prior distribution of m_r as a mixture of a degenerated distribution in 0 and of a uniform distribution allows a good approximation to the posterior distributions of the parameters in the case $m_r = 0$.
- Introducing additional information, only in the last generation, and considering Standardized Hellinger's metric, it is possible to obtain a good approximation to the posterior distributions of the parameters in any case.

- A two-sex branching process has been introduced. It is a suitable model for describing the evolution of a Y-linked gene and its mutations.
- The aim of the work is to make inference about the parameters of the model (including the special case of total infertility, $m_r = 0$).
- Bayesian inference could be easily made using Approximate Bayesian Computation.
- Introducing the prior distribution of m_r as a mixture of a degenerated distribution in 0 and of a uniform distribution allows a good approximation to the posterior distributions of the parameters in the case $m_r = 0$.
- Introducing additional information, only in the last generation, and considering Standardized Hellinger's metric, it is possible to obtain a good approximation to the posterior distributions of the parameters in any case.

- A two-sex branching process has been introduced. It is a suitable model for describing the evolution of a Y-linked gene and its mutations.
- The aim of the work is to make inference about the parameters of the model (including the special case of total infertility, $m_r = 0$).
- Bayesian inference could be easily made using Approximate Bayesian Computation.
- Introducing the prior distribution of m_r as a mixture of a degenerated distribution in 0 and of a uniform distribution allows a good approximation to the posterior distributions of the parameters in the case $m_r = 0$.
- Introducing additional information, only in the last generation, and considering Standardized Hellinger's metric, it is possible to obtain a good approximation to the posterior distributions of the parameters in any case.

- A two-sex branching process has been introduced. It is a suitable model for describing the evolution of a Y-linked gene and its mutations.
- **②** The aim of the work is to make inference about the parameters of the model (including the special case of total infertility, $m_r = 0$).
- Bayesian inference could be easily made using Approximate Bayesian Computation.
- Introducing the prior distribution of m_r as a mixture of a degenerated distribution in 0 and of a uniform distribution allows a good approximation to the posterior distributions of the parameters in the case $m_r = 0$.
- Introducing additional information, only in the last generation, and considering Standardized Hellinger's metric, it is possible to obtain a good approximation to the posterior distributions of the parameters in any case.

Thank you very much!

GOBIERNO DE EXTREMADURA

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

Una manera de hacer Europa

Acknowledgements:

This research has been supported by the Ministerio de Economía y Competividad of Spain (grant MTM2012-31235), the Gobierno de Extremadura (grant GR10118) and the FEDER.