A multi-type A-coalescent with mutation and selection.

Bob Griffiths

Department of Statistics University of Oxford

Branching processes and their applications Badajoz, 7-10 April 2015

Joint research with Matthias Birkner, Alison Etheridge and Luke Miller

Neutral A-coalescent

Multiple merger rate of k lineages while n individuals is

$$\lambda_{nk} = \int_0^1 y^k (1-y)^{n-k} \frac{F(dy)}{y^2}, \ 2 \le k \le n$$

Pitman (1999) and Sagitov (1999).

Examples: F is Beta(2- γ , γ), $\gamma \in (0,2)$; F is uniform in (0,1); F has one atom at $\psi \in (0,1)$; F has one atom at 0.

Λ-Fleming-Viot population

 $\mathbf{X}(t) = (X_1(t), \dots, X_d(t))_{t \ge 0}$ are the frequencies of types in $[d] = \{1, \dots, d\}.$

The state space of $\{\mathbf{X}(t)\}_{t\geq 0}$ is $\Delta_{\circ}^{d} = \{\mathbf{x} \in \mathbb{R}^{d}_{+}; |\mathbf{x}| = 1\}$. The generator of the process acting on $g \in C^{2}(\Delta_{\circ}^{d})$ is

$$\mathcal{L}g(\mathbf{x}) = \int_{[0,1]} \sum_{i \in [d]} x_i [g(\mathbf{x}(1-y) + ye_i) - g(\mathbf{x})] \frac{F(dy)}{y^2}$$

where F is a probability measure. Birkner and Blath (2009). Choose a type *i* individual with probability x_i and add in *y* individuals of the same type at rate $F(dy)/y^2$. Rescale the frequencies by 1 - y to add to 1.

The dual process back in time for a particular type is the Λ -coalescent tree.

Multi-type A-Fleming-Viot population

$$\mathcal{L}_{mt}g(\mathbf{x}) = \int_{\Delta^d} \sum_{i \in [d]} x_i \left(g(\mathbf{x}(1 - |\mathbf{y}|) + \mathbf{y}) - g(\mathbf{x}) \right) rac{G_i(d\mathbf{y})}{|\mathbf{y}|^2},$$

where G_i are sub-stochastic measures, and $g \in C^2(\Delta^d_\circ)$.

$$\Delta^d = \{ \mathbf{y} \in \mathbb{R}^d_+; |\mathbf{y}| \le 1 \}$$
, $\Delta^d_\circ = \{ \mathbf{x} \in \mathbb{R}^d_+; |\mathbf{x}| = 1 \}$.

Choose a type *i* individual with probability x_i and add in **y** individuals of the *d* types at rate $G_i(d\mathbf{y})/|\mathbf{y}|^2$. Rescale the frequencies by $1 - |\mathbf{y}|$ to add to 1.

Mutation and fitness selection of offspring give rise to different reproduction measures G_i . $\int_{\Delta^d} G_i(d\mathbf{y})/|\mathbf{y}| < \infty$ is required.

The measures G_i

There is an assumption that \exists a probability measure F on [0, 1]and sub-stochastic viability measures $V_i(\mathbf{w}, \cdot)$ supported on $\{\mathbf{y} : \mathbf{y} \in \Delta^d; \mathbf{y} \le \mathbf{w}\}$ such that

$$\frac{G_i(d\mathbf{y})}{|\mathbf{y}|^2} = \int_{\mathbf{w} > \mathbf{y}}^{|\mathbf{w}| \le 1} V_i(\mathbf{w}, d\mathbf{y}) \frac{F(d\mathbf{w})}{|\mathbf{w}|^2}$$

It is also assumed that

$$K_i(d\mathbf{y}) = \frac{F(d\mathbf{y}) - G_i(d\mathbf{y})}{|\mathbf{y}|} \quad \left[G_i(d\mathbf{y}) = F(d\mathbf{y}) - |\mathbf{y}|K_i(d\mathbf{y})\right]$$

defines a finite signed measure on Δ^d .

Multi-type juvenile offspring from a type *i* individual are produced at rate $F(d\mathbf{w})/|\mathbf{w}|^2$, not depending on the type of the parent, then thinned by viability selection according to $V_i(\mathbf{w}, d\mathbf{y})$.

Multi-type Moran model with viability selection

Fixed population of *N* individuals. The type space is $[d] = \{1, ..., d\}$. Reproduction events occur at rate λ . *a* juvenile offspring are produced with probability distribution $\{r_a\}_{a \in [N-1]}$. The distribution of the numbers of types **B** which survive to maturity from *a* juvenile offspring of a type *i* parent is $\{Q_{ia}(\mathbf{B})\}$. Probability that a type *i* parent produces **B** mature offspring is

$$p_i(\mathbf{B}) = \sum_{a=|\mathbf{B}|}^{N-1} r_a \mathcal{Q}_{ia}(\mathbf{B}).$$

 $|\mathbf{B}|$ individuals are chosen to be killed, excluding the parent. Viability selection and mutation where offspring are thinned according to $Q_{ia}(\cdot)$.

Possible biological models

1. Mutation occurs independently to juvenile offspring according to a $d \times d$ type transition matrix U. Mutation is followed by viability selection to form the mature offspring **B**.

2. Selection occurs at the parental level, reducing the *a* juvenile offspring to $b \le a$. Mutation then occurs according to a type transition matrix *U* to form the mature offspring **B**, with $|\mathbf{B}| = b$.

The Moran model does not know the internal mechanism of reproduction. It only sees multi-type reproduction.

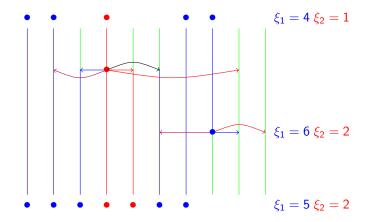
Real and virtual births

Reproduction

a juvenile offspring
$$\longrightarrow \begin{cases} B \text{ mature offspring: Real births} \\ a - |B| \text{ juveniles killed: Virtual births} \end{cases}$$

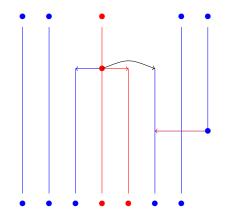
A concept of virtual births is needed for a dual process back in time.

Dual A-branching-coalescing graph back in time



 $\xi(t)$ is the number of ancestral lines of the *d* types at time *t* back. red \rightarrow ; blue \rightarrow ; virtual \rightarrow ; births

Branching-coalescing graph back in time



Dual process $\{\boldsymbol{\xi}(t)\}_{t\geq 0}$

Let Z(t) be the number of individuals of the *d* types at time $t \ge 0$ in the Moran model with viability selection. Assume a stationary distribution exits for Z(t).

Theorem. $\{\mathbf{Z}(t)\}_{t\geq 0}$ is dual to the process $\{\boldsymbol{\xi}(t)\}_{t\geq 0}$ in $\Delta_N = \{\boldsymbol{\xi} \in \mathbb{Z}^d_+, |\boldsymbol{\xi}| \leq N\}$ with non-zero multi-type coalescence rates $q(\boldsymbol{\xi}, \boldsymbol{\xi} + \mathbf{e}_i - \mathbf{I})$ and branching rates $q(\boldsymbol{\xi}, \boldsymbol{\xi} + \mathbf{e}_i)$.

Coalescence occurs when forward in time a type i parent has I real offspring in the ancestral lines.

Branching occurs when a parent has at least one virtual offspring, but no real offspring in the $|\boldsymbol{\xi}|$ ancestral lineages.

Duality equation

The dual equation is based on falling factorial moments, with notation $z_{[n]} = z(z-1)\cdots(z-n+1)$.

$$\mathbb{E}_{\mathbf{Z}(0)}\Big[\prod_{i=1}^{d} Z_{i}(t)_{[\xi_{i}(0)]}\Big] = \mathbb{E}_{\boldsymbol{\xi}(0)}\Big[\prod_{i=1}^{d} Z_{i}(0)_{[\xi_{i}(t)]}\Big]$$

Z(t) forward in time. $\xi(t)$ backward in time.

This is a weak duality equation, however if virtual births are included in a forward model then the duality is a strong duality.

Typed lines and Bayes' factors

Let $\mathcal{H}(\boldsymbol{\xi})$ be the stationary sampling distribution

$$\mathcal{H}(oldsymbol{\xi}) = \mathbb{E}\left[rac{{\binom{Z_1}{\xi_1}\cdots {\binom{Z_d}{\xi_d}}}}{{\binom{N}{|oldsymbol{\xi}|}}}
ight]$$

where expectation is over **Z**.

Rates in the dual process contain Bayes' factors

$$egin{array}{lll} m{\xi}
ightarrow m{\xi} - m{l} + m{e}_i & ; & \mathcal{H}(i,m{\xi} - m{l})/\mathcal{H}(m{\xi}) \ m{\xi}
ightarrow m{\xi} + m{e}_i & ; & \mathcal{H}(i,m{\xi})/\mathcal{H}(m{\xi}) \end{array}$$

because of typed lines and time progressing backward.

$$\mathcal{H}(i, \boldsymbol{\xi}) = rac{\xi_i + 1}{|\boldsymbol{\xi}| + 1} \mathcal{H}(\boldsymbol{\xi} + \mathbf{e}_i)$$

is the probability that the parent is of type *i* and a sample of size $|\boldsymbol{\xi}|$ from the remaining individuals in the population has configuration $\boldsymbol{\xi}$.

Timescale limit to Fleming-Viot process

Let U be the distribution of the juvenile offspring plus the continuing parent line, with $P(U = a + 1) = r_a$. Choose

$$\frac{1}{\lambda^{(N)}} = c_N = \frac{\mathbb{E}[U(U-1)]}{N(N-1)}.$$

Assuming that $c_N \rightarrow 0$ in the Λ -coalescent limit there exists a probability measure F such that

$$\lim_{N\to\infty}\frac{1}{c_N}P(U>Nx)=\int_{(x,1]}\frac{F(dy)}{y^2}$$

If the mutation-selection distribution also converges the limit relative frequencies follow a Fleming-Viot process with generator

$$\mathcal{L}_{mt} g(\mathbf{x}) = \int_{\Delta^d} \sum_{i \in [d]} x_i \left(g(\mathbf{x}(1 - |\mathbf{y}|) + \mathbf{y}) - g(\mathbf{x})
ight) rac{G_i(d\mathbf{y})}{|\mathbf{y}|^2}$$

Dual Process

The Fleming-Viot process is dual to the system of branching and coalescing lineages $\{\xi(t)\}_{t\geq 0}$ which takes values in \mathbb{Z}_{+}^{d} .

The transition rates are, up to Bayes' factors, for $0 \le \mathbf{I} \le \boldsymbol{\xi}$, $\mathbf{I} \ne \mathbf{0}, \mathbf{e}_i$, $|\mathbf{I}| \ge 1$

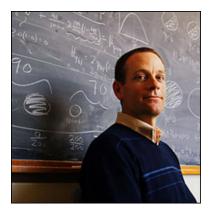
$$\begin{aligned} q(\boldsymbol{\xi}, \boldsymbol{\xi} - \mathbf{I} + \mathbf{e}_i) &\propto \int_{\Delta^d} \left[\begin{pmatrix} |\boldsymbol{\xi}| \\ |, |\boldsymbol{\xi}| - |\mathbf{I}| \end{pmatrix} \prod_{j \in [d]} y_j^{l_j} \cdot (1 - |\mathbf{y}|)^{|\boldsymbol{\xi}| - |\mathbf{I}|} \right] \frac{G_i(d\mathbf{y})}{|\mathbf{y}|^2} \\ q(\boldsymbol{\xi}, \boldsymbol{\xi} + \mathbf{e}_i) &\propto \int_{[0,1]} \left(1 - (1 - |\mathbf{y}|)^{|\boldsymbol{\xi}|} \right) \frac{K_i(d|\mathbf{y}|)}{|\mathbf{y}|} \\ \end{aligned}$$
Recall that $K_i(d\mathbf{y}) = \frac{F(d\mathbf{y}) - G_i(d\mathbf{y})}{|\mathbf{y}|}$

Example •

A two-type model with Beta measures and no mutation. The generator for X_1 acting on g(x) is

$$x \int_{0}^{1} \left[g((1-y)x+y) - g(x) \right] \frac{B_{2-\gamma_{1},\gamma_{1}}(dy)}{y^{2}} \\ + (1-x) \int_{0}^{1} \left[g((1-y)x) - g(x) \right] \frac{B_{2-\gamma_{2},\gamma_{2}}(dy)}{y^{2}}$$

This model arises naturally from a continuous time Schweinsberg differential rates birth model or from a model with viability selection for the two types. The parameters $\gamma_1, \gamma_2 \in (0, 1)$.



Two type Beta model: viability selection

The measures $G_i(dy) = B_{2-\gamma_i,\gamma_i}(dy)$, i = 1, 2.

Take $F = G_1$, no thinning of type 1 individuals.

A classical thinning identity for $Y_i \sim G_i$, i = 1, 2and $U \sim B_{2-\gamma_2,\gamma_2}$ independent of Y_1 is that for $\gamma_2 > \gamma_1$

$$Y_2 =^{\mathcal{D}} Y_1 U$$

Let $f(y_2 \mid y_1)$ be the density of $Y_2 \mid Y_1 = y_1$, then

$$B_{2-\gamma_2,\gamma_2}(dy_2) = \int_{y_2}^1 f(y_2 \mid y_1) dy_2 B_{2-\gamma_1,\gamma_1}(dy_1)$$

Example •

If there is mutation, then viability selection on juvenile offspring a model is that type $i \in [d]$ individuals give birth to $|\mathbf{y}|$ offspring at rate $G_i(d|\mathbf{y}|)/|\mathbf{y}|^2$, and $\mathbf{y} = \sum_{j \in [d]} u_{ij} y_j \mathbf{e}_j$, where $\{u_{ij}\}$ is a stochastic matrix of mutation rates.

Example •

If there is viability selection, then mutation $\mathbf{y} = |\mathbf{y}| \sum_{j \in [d]} u_{ij} \mathbf{e}_j$.

Weak selection theorem

Let G_i , $i \in [d]$ be a collection of sub-stochastic probability measures constructed from viability selection with measures $F(\cdot)$ and $V_i(\mathbf{x}, \cdot)$. A very weak mutation and selection model occurs by choosing $K_i(\cdot) = -\sigma_i \delta_{\epsilon(\mathbf{k}_i/\sigma_i)}(\cdot)$ with $\sigma_i \ge 0$, $|\mathbf{k}_i| = \sigma_i$, $i \in [d]$ and letting $\epsilon \to 0$. Then the limit generator equation is

$$\begin{split} \mathcal{L}g(\mathbf{x}) &= \int_{\Delta^d} \sum_{i \in [d]} x_i \left(g(\mathbf{x}(1 - |\mathbf{y}|) + |\mathbf{y}|) - g(\mathbf{x}) \right) \frac{F(d|\mathbf{y}|)}{|\mathbf{y}|^2} \\ &+ \sum_{j \in [d]} \sum_{i \in [d]} (x_i \mu_{ij} - x_j \mu_{ji}) g_j(\mathbf{x}) \\ &+ \sum_{j \in [d]} x_j (\sigma_j - \sum_{i \in [d]} x_i \sigma_i) g_j(\mathbf{x}) \end{split}$$

representing a Λ -Fleming-Viot generator, where $\mu_{ij} = k_{ij}$ are mutation rates from *i* to *j* and σ_i are selection rates, $i, j \in [d]$.