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Households SIR epidemic model

mn households of size n

(n = 1, 2, · · · , nmax)

total no. of households m =
∑

nmax
n=1

mn

total no. of individualsN =
∑

nmax
n=1

nmn < ∞

SIR (susceptible → infective → recovered)

Infectious period ∼ TI , having an arbitrary but specified distribution

Infection rates (individual → individual)

(i) local (within-household) λL

(ii) global (between-household) λG/N

Latent period/infectivity profiles

(Bartoszyński (1972), Becker and Dietz (1995), Ball, Mollison and Scalia-Tomba (1997))
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Why study households models?

Household structure is a key departure from
homogeneous mixing for human populations and can
have significant impact on disease dynamics

There are outbreak control measures associated with
households and similar structures (e.g. schools and
workplaces)

Epidemic data are often collected at the household level

Households models are mathematically reasonably
tractable and consequently are generally easier to
interpret than complex simulation models
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Threshold parameterR∗

GLOBAL INFECTION

R∗= mean number of global contacts emanating from a typical single-household
epidemic

R∗ =

nmax∑

n=1

α̃nµn(λL)λGE[I],

where

α̃n = nmn

N
= P(randomly chosen person lives in a household of size n)

µn(λL) = mean size of single (size-n) household epidemic with 1 initial infective

P(global epidemic) > 0 ⇐⇒ R∗ > 1

(Ball, Mollison and Scalia-Tomba (1997), Becker and Dietz (1995))
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Number of people infected
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Number of households infected

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.11798 λ

G
 = 0.5

R
*
 = 0.8

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.24308 λ

G
 = 0.5

R
*
 = 1.2

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.37425 λ

G
 = 0.5

R
*
 = 1.6

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.11798 λ

G
 = 0.49997

R
*
 = 0.8

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.11798 λ

G
 = 0.74996

R
*
 = 1.2

0 20 40 60 80 100
0

2000

4000

6000

8000

Households infected

λ
L
 = 0.11798 λ

G
 = 0.99995

R
*
 = 1.6

Number of households infected in each set of 10,000 simulations, TI ≡ 1,
population consisting of 100 households of size 5

Inference for emerging epidemics among a community of households – p.6



Estimation in an emerging epidemic

Suppose that an epidemic is observed in its emerging phase and

population household-size distribution is known (e.g. from census
data);

an estimate of the early exponential growth rate r of the epidemic
is available;

more-detailed, household-level data are available in a sample of
households.

Goal is to estimate local infection rate λL.

If the distribution of infectious period TI is known, (λL, r) determines
the global infection parameter λG.
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Estimation in an emerging epidemic

Consider an SIR epidemic among 1, 000, 000 households, with

(α1, α2, · · · , α6) = (0.29, 0.35, 0.16, 0.14, 0.04, 0.02),

where αi is the fraction of households having size i. Suppose that

λL = 1, λG = 1 and TI ∼ Exp(1).

Cf. the influenza example in Fraser (2007).

After 1, 000 individuals have recovered, estimate λL by fitting final size
distribution pn(·|λL) , to observed completed single-household
outbreaks.

pn(k|λL) (k = 1, 2, · · · , n) is the probability that a
single-size-n-household epidemic, with 1 initial infective and no global
infection, has k recovered cases in total.
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Estimation in an emerging epidemic
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Estimation in an emerging epidemic
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Single-household epidemic

Let E(n)
H denote a typical size-n single-household epidemic, started by

one household member being infected at time t = 0.

For t ≥ 0, let X(n)
H (t) and Y

(n)
H (t) be the numbers of susceptibles and

infectives in E
(n)
H at time t.

Let T (n) = {(x, y) : x = 0, 1, ..., n− 1; y = 0, 1, ..., n− x} be the state

space for
{(

X
(n)
H (t), Y

(n)
H (t)

)

: t ≥ 0
}

.

For (x, y) ∈ T (n), let

p(n)x,y(t|λL) = P(X
(n)
H (t) = x, Y

(n)
H (t) = y) (t ≥ 0)

and

p̃(n)x,y(r|λL) =

∫ ∞

0

e−rtp(n)x,y(t|λL) dt (r ≥ 0).
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Approximating branching process

Let E∞ denote the general (Crump-Mode-Jagers) branching process
which approximates the early stages of the epidemic in a community
of households, in which individuals correspond to single-household
epidemics and an individual reproduces in E∞ whenever a global
contact emanates from the corresponding single-household epidemic.

For n = 1, 2, · · · , nmax, let ξ(n) be the point process of ages at which a
typical size-n individual in E∞ reproduces and let
µ(n)(t) = E[ξ(n)([0, t])] (t ≥ 0). Then

µ(n)(dt) = λG

∑

(x,y)∈T (n)

yp(n)x,y(t|λL) dt.

Let ξ be the point process of ages at which a typical individual in E∞

reproduces and µ(t) = E[ξ([0, t])] (t ≥ 0).
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Approximating branching process

A typical individual in E∞ has household size distributed according to
the size-biased distribution α̃n (n = 1, 2, · · · , nmax), so

µ(dt) =

nmax
∑

n=1

α̃nµ
(n)(dt) = λG

nmax
∑

n=1

α̃n

∑

(x,y)∈T (n)

yp(n)x,y(t|λL) dt.

Suppose that R∗ > 1. Then E∞ has a Malthusian parameter r > 0

given by
∫ ∞

0

e−rtµ(dt) = 1.

Note that r satisfies

λG

nmax
∑

n=1

α̃n

∑

(x,y)∈T (n)

yp̃(n)x,y(r|λL) = 1.
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Approximating branching process

Assume that individuals live forever in E∞.

For n = 1, 2, · · · , nmax and (x, y) ∈ T (n), an individual is said to be in
state (n, x, y) if it corresponds to a single size-n household epidemic
and there are x susceptibles and y infectives in that epidemic.

For t ≥ 0 and
(n, x, y) ∈ T = {(n, x, y) : n = 1, 2, · · · , nmax and (x, y) ∈ T (n)}, let
Yn,x,y(t) be the number of individuals in state (n, x, y) at time t in E∞.

Suppose that R∗ > 1. Then, using Nerman (1981), there exists a
random variable W ≥ 0, where W = 0 ⇐⇒ E∞ goes extinct, such
that for all (n, x, y) ∈ T ,

e−rtYn,x,y(t)
a.s.
−−→ α̃np̃

(n)
x,y(r|λL)W as t → ∞.
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Approximating branching process

Recall that if R∗ > 1 then, for all (n, x, y) ∈ T ,

e−rtYn,x,y(t)
a.s.
−−→ α̃np̃

(n)
x,y(r|λL)W as t → ∞,

where W = 0 ⇐⇒ E∞ goes extinct.

Note that, for n = 1, 2, · · · , nmax,

∑

(x,y)∈T (n)

p(n)x,y(t|λL) = 1 =⇒
∑

(x,y)∈T (n)

p̃(n)x,y(r|λL) =
1

r
.

Thus, if E∞ does not go extinct, as t → ∞, the proportion of
individuals that are in state (n, x, y) converges almost surely to

α̃nrp̃
(n)
x,y(r|λL).

These yield the correct probabilities for an emerging epidemic.
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Estimation in an emerging epidemic

Suppose that

an estimate r̂ of the growth rate r is available;

the epidemic has taken off, is still in its exponentially growing
phase but has been running sufficiently long for the asymptotic
composition of the branching process E∞ to be applicable.

For (n, x, y) ∈ T , let a(n)x,y be the number of size-n households with x

susceptibles and y infectives when estimation is made.

Assuming complete knowledge of the current state of each
single-household epidemic, λL may be estimated by maximising the
normalised “pseudolikelihood" function

Lfull(λL|a, r̂) =

nmax
∏

n=2

∏

(x,y)∈T (n)

p̃(n)x,y(r̂|λL)
a(n)
x,y .
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Estimation in an emerging epidemic

Suppose that estimation is based only on completed single-household
epidemics. Then λL may be estimated by maximising

Lfinal(λL|a, r̂) =

nmax
∏

n=2

n−1
∏

x=0

p̃
(n)
x,0(r̂|λL)

a
(n)
x,0 .

Subject to mild conditions,

lim
t→∞

p
(n)
x,0(t|λL) = lim

r→0+
rp̃

(n)
x,0(r|λL),

so using the usual single-household final size distribution yields
“unbiased" estimates as the growth rate r ↓ 0.
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Estimation in an emerging epidemic

Suppose that only recoveries are observed.

For n = 1, 2, · · · , nmax and j = 1, 2, · · · , n, let c(n)j be the observed
number of size-n households with j recoveries,
A

(n)
j = {(x, y) ∈ T (n) : x+ y = n− j} and

q̃
(n)
j (r|λL) =

∑

(x,y)∈A
(n)
j

p̃(n)x,y(r|λL)/(
1

r
− q̃

(n)
0 (r|λL)),

where

q̃
(n)
0 (r|λL) =

n
∑

y=1

p̃
(n)
n−y,y(r|λL).

Then λL may be estimated by maximising

Lrec(λL|c, r̂) =

nmax
∏

n=2

n
∏

j=1

q̃
(n)
j (r̂|λL)

c
(n)
j .
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Calculation of p̃(n)x,y(r|λL)

Generally difficult!

If TI ∼ Exp(γ) then {(X
(n)
H (t), Y

(n)
H (t)) : t ≥ 0} is a continuous-time

Markov chain with state space T (n).

Assign labels 1, 2, · · · , s(n) to states in T (n), where s(n) = |T (n)|

(= n(n+ 3)/2).

Let P (n)(t) and Q(n) be the transition-probability and transition-rate

matrices of {(X(n)
H (t), Y

(n)
H (t)) : t ≥ 0} using this labelling. Then

P (n)(t) = exp(tQ(n)) =⇒

∫ ∞

0

e−rtP (n)(t) dt = (rIs(n) −Q(n))−1 (r > 0),

and p̃
(n)
x,y(r|λL) follows.

Extends to case when TI has a phase-type distribution.
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Estimation in an emerging epidemic
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Histograms of estimates of within-household infection rate λL based on
1, 000 simulated epidemics with λL = 1 and λG = 1 that took off.
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Estimation in an emerging epidemic

Consider an SIR epidemic among 10, 000 households, with

(α1, α2, · · · , α6) = (0.13, 0.30, 0.23, 0.18, 0.09, 0.07),

where αi is the fraction of households having size i. Suppose that

λL = 1.56, λG = 1.21 and TI ∼ Exp(1).

Cf. the varicella example in Fraser (2007).

After 500 individuals have recovered, estimate λL using the methods
described above, with the growth rate estimate r̂ being obtained by
fitting a straight line to the logarithm of the number of recoveries,
ignoring the first 20 recoveries.

Inference for emerging epidemics among a community of households – p.21



Estimates ofλL with time
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Estimation in an emerging epidemic
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Mean squared error (MSE)
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MSE of estimates of λL using the full-pseudolikelihood method with known

recovery rate γ = 1 during the emerging phase of 1, 000 simulated epidemics with
different population sizes. Recall m is the number of households.
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Concluding comments

When fitting household and other models to data on an emerging
epidemic, the data collected need to be modelled very carefully taking
due account of the emerging nature of the epidemic.

Asymptotic stable composition of supercritical branching processes
provides a flexible framework for modelling such data.

Areas for further research include

estimation of growth rate r

numerical implementation for non-Markovian models

variance of estimators

multitype epidemics — e.g. age-stratified populations,
asymptomatic cases

temporal data within households.
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Infinite data

Suppose that the final sizes in m households are observed, each
distributed according to p̃n(·|λL) but the maximum-likelihood estimate

λ̂
(m)
L is obtained using pn(·|λL).

Then

λ̂
(m)
L

a.s.
−→ λ̂∗

L as m → ∞,

where λ̂∗
L maximises

n
∑

i=1

p̃n(i|λL) log pn(i|λL).

Equivalently, λ̂∗
L minimises the Kullback-Leibler divergence of pn(·|λL)

from p̃n(·|λL).

Obvious extension to unequal household sizes.
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Dependence of estimates onr
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Estimates of λL using usual final size distributions pn(·|λL)

(n = 1, 2, · · · , nmax), assuming infinite data.
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Effect of household size
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Estimates of λL assuming infinite data, for emerging epidemics with
r = 1.76 and λL = 1.56 for populations with constant household size.
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Effect of household size
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Reed-Frost model
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Estimates of pL using usual final size distribution for Reed-Frost single-household

epidemic assuming infinite data with growth rate r fixed at 0.8109.
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Reed-Frost model
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epidemics with pL = 0.61 and µG = 1.21 that took off.
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Concluding comments

When fitting household and other models to data on an emerging
epidemic, the data collected need to be modelled very carefully taking
due account of the emerging nature of the epidemic.

Asymptotic stable composition of supercritical branching processes
provides a flexible framework for modelling such data.

Areas for further research include

estimation of growth rate r

numerical implementation for non-Markovian models

variance of estimators

multitype epidemics — e.g. age-stratified populations,
asymptomatic cases

temporal data within households.
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