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Model description

The basic ingredients
a cell population (the hosts)
a population of parasites colonizing the cells

The basic assumptions
cells form an ordinary Galton-Watson tree (GWT)
parasites sitting in different cells multiply and share their
progeny into daughter cells independently, but
for parasites hosted by the same cell v , offspring numbers
and sharing of progeny are conditionally independent
given the number of daughter cells of v
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Notational details: the cell population

Ulam-Harris tree V =
⋃

n≥0Nn with N0 = {∅}.

cell population: a GWT T =
⋃

n∈N0
Tn ⊂ V with T0 = {∅}

and

Tn := {v1...vn ∈ V|v1...vn−1 ∈ Tn−1 and 1≤ vn ≤ Nv1...vn−1},

where Nv denotes the number of daughter cells of v.

the Nv, v ∈V are iid with common law (pk )k≥0, the offspring
distribution of cells, having finite mean ν = ∑k≥1 kpk .

the number of cells process: Tn = ∑v∈Tn−1
Nv (a GWP).
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Details: the parasites

the number of parasites in cell v are denoted by Zv.

the number of parasites process is then defined by

Zn := ∑
v∈Tn

Zv, n ∈ N0.

the set of contaminated cells: T∗n = {v ∈ Tn : Zv > 0}.

the number of contaminated cells: T ∗
n = #T∗n.

cell counts with a specific number of parasites:

Tn :=
(
Tn,0,Tn,1,Tn,2, . . .

)
,

where Tn,k gives the number of cells in generation n
hosting k parasites.

Gerold Alsmeyer Host-parasite co-evolution 5 of 30



Model The ABPRE Extinction results Survival case

Z∅=1

Z1=2

Z11=3

...

Z12=1

...
...

...
...

Z2=4 Z3=1

Z31=0

Z32=5

...
...

Z33=2

...
...

...

Z2

Z1

Z0

Figure : A typical realization of the first three generations of a BwBP.
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Reproduction of parasites

To describe reproduction of parasites consider those hosted by
a cell v ∈ T and suppose that

Zv = z ≥ 1 and that
v has k daughter cells, labeled v1, ...,vk , thus Nv = k .

For i = 1, ...,z, let

X (•,k)
i ,v :=

(
X (1,k)

i ,v , . . . ,X (k ,k)
i ,v

)

be iid copies of a random vector X (•,k) :=
(
X (1,k), . . . ,X (k ,k)

)

with arbitrary law on Nk
0 and independent of any other occurring

rv’s. Then, given Nv = k , and for i = 1, ...,Zv = z,

X (j ,k)
i ,v equals the number of offspring of the i th parasite in v

that is shared into daughter cell vj .
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Model parameters and basic assumptions

µj ,k = EX (j ,k)

γ = EZ1 = ∑k≥1 pk ∑
k
j=1 µj ,k , the mean number of offspring

per parasite, is supposed to be positive and finite, thus
µj ,k < ∞ for all j ≤ k and P(Nv = 0) < 1.
We further assume p1 = P(Nv = 1) < 1, P(Z1 = 1) < 1, and
a positive chance for more than one parasite to be shared
in the same daughter cell:

pk P(X (j ,k) ≥ 2) > 0 for at least one (j ,k), 1≤ j ≤ k .
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The notorious questions

Extinction-explosion dichotomy for the number of parasites
process (Zn)n≥0.
Extinction-explosion dichotomy for the number of
contaminated cells process (T ∗

n )n≥0

{Zn→ ∞}= {T ∗
n → ∞}?

Necessary and sufficient conditions for almost sure
extinction of contaminated cells.
Limit theorems for the relevant processes in the survival
case (after normalization).
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The ABPRE

The associated branching process in random environment
(ABPRE) is obtained by picking an infinite random cell-line
(spine) in a size-biased version of T:
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The construction (standard)

Let (Tn,Cn)n≥0 be a sequence of iid random vectors
independent of (Nv)v∈V and (X (•,k)

i ,v )k≥1,i≥1,v∈V.
The law of Tn equals the size-biasing of the law of the Nv,
i.e.

P(Tn = k) =
kpk

ν

for each n ∈ N0 and k ∈ N, and

P(Cn = j |Tn = k) =
1
k

for 1≤ j ≤ k , which means that Cn has a uniform
distribution on {1, . . . ,k} given Tn = k .
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The ABPRE

The random cell-line (spine) (Vn)n≥0 is then recursively defined
by V0 = ∅ and

Vn := Vn−1Cn−1

for n ≥ 1. Then

∅ =: V0→ V1→ V2→ ·· · → Vn→ . . .

provides us with a random cell line in V (not picked uniformly)
as depicted in the following picture.
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The ABPRE
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The number of parasites along the spine

Regarding the structure of the number of parasites process
along the spine (ZVn )n≥0, the following lemma is fundamental.

Lemma

Let (Z ′n)n≥0 be a BPRE with Z∅ ancestors and iid environmental
sequence Λ := (Λn)n≥0 taking values in
{L (X (j ,k))|1≤ j ≤ k < ∞} and such that

P
(

Λ0 = L (X (j ,k))
)

=
pk

ν
=

1
k
· kpk

ν
= P(C0 = j ,T0 = k)

for all 1≤ j ≤ k < ∞. Then (ZVn )n≥0 and (Z ′n)n≥0 are equal in
law.
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Definition of the ABPRE

We call the BPRE (Z ′n)n≥0 the associated branching process in
random environment (ABPRE). It is one of the major tools used
in the study of the BwBP, and the following lemma provides a
key relation between this process and its associated ABPRE.

Gerold Alsmeyer Host-parasite co-evolution 16 of 30



Model The ABPRE Extinction results Survival case

A key result

Lemma

For all n,k ,z ∈ N0,

Pz
(
Z ′n = k

)
= ν

−nEzTn,k

and

Pz
(
Z ′n > 0

)
= ν

−nEzT
∗

n .
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Generating functions

For n ∈ N and s ∈ [0,1]

E(sZ ′n |Λ) = gΛ0 ◦ ...◦gΛn−1(s)

is the quenched generating function of Z ′n with iid gΛn and gλ

defined by

gλ (s) := E(sZ ′1 |Λ0 = λ ) = ∑
n≥0

λnsn

for any distribution λ = (λn)n≥0 on N0. Moreover,

Eg′Λ0
(1) = EZ ′1 = ∑

1≤j≤k

pk

ν
EX (j ,k) =

EZ1

ν
=

γ

ν
< ∞, (1)

where γ = EZ1.
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Regimes of the ABPRE

It is well-known that (Z ′n)n≥0 survives with positive probability iff

E logg′Λ0
(1) > 0 and E log−(1−gΛ0(0)) < ∞.

Recall that γ < ∞ is assumed and that there exists 1≤ j ≤ k < ∞

such that pk > 0 and P(X (j ,k) 6= 1) > 0, which ensures that
Λ0 6= δ1 with positive probability. The ABPRE is called
supercritical, critical or subcritical if E logg′Λ0

(1) > 0, = 0 or < 0,
respectively.
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Regimes of the ABPRE

The subcritical case further divides into the three subregimes
when Eg′Λ0

(1) logg′Λ0
(1) < 0,= 0, or > 0, respectively, called

strongly, intermediately and weakly subcritical case. The quite
different behavior of the process in each of the three
subregimes is shown by the limit results derived in

J. Geiger, G. Kersting, and V. A. Vatutin.
Limit theorems for subcritical branching processes in
random environment.
Ann. Inst. H. Poincaré Probab. Statist., 39(4):593–620,
2003.

Gerold Alsmeyer Host-parasite co-evolution 20 of 30



Model The ABPRE Extinction results Survival case

Notation

For~s = (s0,s1, ...) ∈ N =
{

(xi)i≥0 ∈ N∞

0 |xi > 0 finitely often
}

and
z ∈ N0, we use

P~s for probabilities conditioned upon the event that the
initial generation consists of sk cells hosting exactly k
parasites for k = 0,1, ..., i.e. T0,k = sk for k = 0,1, ...
Pz for probabilities given that initially there is one cell which
contains z parasites, i.e. N∅ = 1 and Z∅ = z.
P = P1.
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The number of parasites process

Theorem (Extinction-explosion principle)

The parasite population of a BwBP either dies out or explodes,
i.e. for all~s ∈ N =

{
(xi)i≥1 ∈ N∞

0 |xi > 0 finitely often
}

P~s(Zn→ 0) + P~s(Zn→ ∞) = 1.
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The number of contaminated cells process

Theorem

Let P(Surv) > 0.
(a) If P2(T ∗

1 ≥ 2) > 0, then P∗z(T ∗
n → ∞) = 1 and thus

Ext = {supn≥0 T ∗
n < ∞} Pz-a.s. for all z ∈ N.

(b) If P2(T ∗
1 ≥ 2) = 0, then P∗z(T ∗

n = 1 f.a. n ≥ 0) = 1 for all
z ∈ N.
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Almost sure extinction of contaminated cells

Theorem

(a) If P2(T ∗
1 ≥ 2) = 0, then P(Ext) = 1 if, and only if,

E logE(Z1|N∅)≤ 0 or E log−P(Z1 > 0|N∅) = ∞.

(b) If P2(T ∗
1 ≥ 2) > 0, then the following statements are

equivalent:
(i) P(Ext) = 1.
(ii) ET ∗

n ≤ 1 for all n ∈ N0.
(iii) supn∈N0

ET ∗
n < ∞.

(iv) ν ≤ 1, or

ν > 1, E logg′Λ0
(1) < 0 and inf

0≤θ≤1
Eg′Λ0

(1)θ ≤ 1
ν
.
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Now consider the survival case.
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A second size-biasing
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A KS-type result for the number of contaminated cells

Theorem

(ν−nT ∗
n )n≥0 is a nonnegative supermartingale with respect to

the filtration (Fn)n≥0 and therefore almost surely convergent to
an integrable random variable L as n→ ∞. Furthermore,
(a) P(L = 0) < 1 iff the following three conditions hold true:

(i) ν > 1.
(ii) EN logN < ∞.
(iii) E logg′Λ0

(1) > 0 and E log−(1−gΛ0(0)) < ∞.
(b) P(L = 0) < 1 implies {L = 0}= Ext a.s.
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Heyde-Seneta norming

Theorem

If E logg′Λ0
(1) > 0 and E log−(1−gΛ0(0)) < ∞, then there exists

a sequence (cn)n≥0 in (0,∞) such that cn+1/cn→ ν and c−1
n T ∗

n
converges a.s. to a finite random variable L∗ satisfying
P(L∗ > 0) = P(Surv). Furthermore, the sequence (cn)n≥0 is a
proper Heyde-Seneta norming for (Tn)n≥0 as well.
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A KS-type result for the number of parasites

The normalized number of parasites process

Wn = γ
−nZn, n ≥ 0

is a martingale.

Theorem

The expectation of W is either 0 or 1, and

EW = 1 iff EZ1 logZ1 < ∞ and E

(
g′Λ0

(1)

γ
log

g′Λ0
(1)

γ

)
< 0.

in which case P(W > 0) = P(Surv).
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Want to know more?

G. Alsmeyer and S. Gröttrup.
Branching within branching I: Extinction properties, 2015.
Preprint (19 pages).

G. Alsmeyer and S. Gröttrup.
Branching within branching II: Limit theorems, 2015.
Preprint (38 pages).
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