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Let {&,,,n € Ng} be a branching
process in a random environment
(BPRE). It is defined by a sequence
of independent and identically distributed
generating functions { fy, (s),n € N}.



Note that &,, is the size of the nth
generation (we assume that & =
1). The generating function fy, (s),
s € [0, 1], defines the reproduction
law for the particles in the (n — 1)th
generation, n € N.



Assuming that f{ (1) € (0,400)
a.s., weset X; =In f/ (1) fori € N.
Note that X1, X9, ... areindependent
and 1dentically distributed random
variables. Introduce the associated
random walk

n
So=0, Sp=) X;, neN.
1=1



Suppose that the process {&,,} is
subcritical, 1.e. EX1 < 0, and there
exists a positive number s € [0, 1]
such that

Ec*N =1, E|X;| M < 400.

(1)



Condition (1) is classical for random
walk with a negative drift and allows
one to pass to conjugate random
walk with a positive drift.



In addition, we assume that

B¢ In (€ +1) e DX < oo,

(2)
and 1f ¢ > 1, then there exists a
number p > 3¢ such that

E (gffe<%—p>X1) < o0, (3)



Introduce the first passage time
of the process {&,,} to a level x >
1:

T, =min{n ¢, >z},
and the lifetime of the process {&,,}:
T =min{n:§&,=0}.



[t is known (see |1]) that if conditions
(1)-(3) hold, then, as x — oo,

P (T, < o0) ~ cpx™”,

where c¢q 1s a positive constant.



Set
0 =EXe” b=EX].

There are laws of large numbers tor
the random values T, and T (see

2]): if conditions (1)-(3) hold, then,

as r — OQ,

Iy
Inz

1
Tx<oo}g—
a
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If, in addition, for some 0 > 0

E (1nJr 771)1+6 < +00,

then, as x — o0,

T
Inz

S

1
Tx<oo}5——
a
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In addition, we assume that

E (X12 exp (%Xl)) < 4o00. (4)
Set

o’ =E (X12 exp (%Xl)) — a’.
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Let B = {B(t), t €|0,1]} be

a standard Brownian motion and

D
the symbol — means convergence

in distribution in the space D |0, 1]
with the Skorokhod topology:.
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The following functional limit theorem
for the first passage time to different
levels is valid (see |3]).

Theorem 1. If {&,,, n € Ny} is
a subcritical BPRE and conditions

(1)-(4) hold, then, as x — +00,

4 )
T _tlnaz‘
22" 0 4T, <o b BB
O- ]Il_x
\ V o
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Also the following functional limit

theorem tor the size of different generations
is valid.

Theorem 2. If {£,,, n € Ng} is

a subcritical BPRE and conditions
(1)-(4) hold, then, as y — 400,

(h”lgv_y —ty

’ te0,1)| Ty <00 b 3B

SERS

o
\ /
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We notice that in the theorem 2
the variable t belongs to the set

0, 1). The symbol 2 in this theorem
means convergence in distribution

in the space D [0, u] with the Skorokhod
topology for an arbitrary fixed u €

(0,1).
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A few words about some ideas of
the proot of the theorems. Denote
A the set of probability measures
on the set of nonnegative integers.
Introduce on A the matric of total
variation, then A is a complete separable
metric space. Suppose that the probability
measure (), corresponds to the generating
function fy, (s).
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~Go to the new probability measure

P and the corresponding mathematical
expectation E supposing for any n €

N and any measurable finite number
function g defined on the set A™ x

Nj that

Eg(le”'aQn;fl?"'vé—n) —
:Ee%sng (Q17°'-7Qn;§17'°'7§n)'
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Concerning this measure the sequence
{¢,.} is a supercritical BPRE and
sequence { @y, } is the random environment
of the BPRE. Notice that EXl =

Qa.
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The sequence {&,,/ exp Sy} for a
fixed random environment is a nonnegative
martingale, therefore P-a.s. there
is the limit

lim $n

= W < +4o0.
n—00exp Sy,
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For a supercritical BPRE the following
two events are important:

D:{ lim §n:+oo},

n—oo

D* ={W > 0}.
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The first event is called the set of
nonextinction and the second event

is called the set of natural growth.
It 1s clear that

D* C D.
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[f conditions (1)-(3) hold, then

~

P (D) > 0.

[t is typical for supercritical branching
processes.

23



The sets D and D* are indistinguishable
in probability sense, that is

~

P (D A D*) = 0.
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The set D is approximated, on
the one hand, by the set G = {&. > 0}

lim P(D AGy) =0,

k—00
and, on the other hand, by the set

lim P(DA D,)=0.

T—r+00
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Set for € € (0,1/2)

edon Sk

A“@{n?zim‘a :

[t is clear that Ay ()N D* and D*
are close.
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Introduce the random event

Dy = DNDN{Ty > k}NA (€),

which has an important significance
in the theory.

27



[t turns out that D, and G}, are
approximated by the set D,

lim lim supP (Dx A\ ijk) =0,

k—00x—+00

lim lim supP (G A D%k) = 0.

k—00x—+00
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[f the event D, 1. is valid, then

In fTL ~ Sn,
and {Sp} is a random walk with a

positive drift, for which there is the
well advanced renewal theory.
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Recall some facts of this theory.
Let {Sp} be a random walk with
positive drift a. Set for x > 0

Ty =min{n: S, > z}.
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The following law of large number
is valid: almost sure, as x — o0,

T 1
— — -
X a
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Suppose that the variance o2 of
a step of the random walk is finite
and positive. For arbitrary « > 0
introduce the random process Zy:
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The following functional limit theorem
is valid (see |4])): as x — o0,

(Z:(1), teo,1} 2 B.
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At last for the random walk {.5, }
the following functional limit theorem

is valid: as n — o0,

S — nta
| nt | D
{ e ,tE[O,l]}—>B.
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The mentioned laws of large numbers
and functional limit theorems for
BPRE are corollaries of the corresponding
theorems of the renewal theory.
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