III Workshop on Branching Processes and their Applications Badajoz, Spain, 2015

ON SUBCRITICAL BRANCHING PROCESSES IN RANDOM ENVIRONMENT

AFANASYEV V.I.

Let $\{\xi_n, n \in \mathbb{N}_0\}$ be a branching process in a random environment (BPRE). It is defined by a sequence of independent and identically distributed generating functions $\{f_n(s), n \in \mathbb{N}\}$. Note that ξ_n is the size of the *n*th generation (we assume that $\xi_0 = 1$). The generating function $f_n(s)$, $s \in [0, 1]$, defines the reproduction law for the particles in the (n - 1)th generation, $n \in \mathbb{N}$.

Assuming that $f'_1(1) \in (0, +\infty)$ a.s., we set $X_i = \ln f'_i(1)$ for $i \in \mathbb{N}$. Note that X_1, X_2, \ldots are independent and identically distributed random variables. Introduce the *associated* random walk

$$S_0 = 0, \ S_n = \sum_{i=1}^n X_i, \ n \in \mathbb{N}.$$

Suppose that the process $\{\xi_n\}$ is *subcritical*, i.e. $\mathbf{E}X_1 < 0$, and there exists a positive number $\varkappa \in [0, 1]$ such that

$$\mathbf{E}e^{\varkappa X_1} = 1, \ \mathbf{E} |X_1| e^{\varkappa X_1} < +\infty.$$
(1)

Condition (1) is classical for random walk with a negative drift and allows one to pass to *conjugate random* walk with a positive drift.

In addition, we assume that

$$\mathbf{E}\xi_1 \ln\left(\xi_1 + 1\right) e^{(\varkappa - 1)X_1} < +\infty,\tag{2}$$

and if $\varkappa \geq 1$, then there exists a number $p > \varkappa$ such that

$$\mathbf{E}\left(\xi_1^p e^{(\varkappa - p)X_1}\right) < +\infty. \quad (3)$$

Introduce the first passage time of the process $\{\xi_n\}$ to a level $x \ge 1$:

$$T_x = \min \{n : \xi_n > x\},$$

and the *lifetime* of the process $\{\xi_n\}$:
$$T = \min \{n : \xi_n = 0\}.$$

It is known (see [1]) that if conditions (1)-(3) hold, then, as $x \to \infty$,

 $\mathbf{P}\left(T_x < \infty\right) \sim c_0 x^{-\varkappa},$

where c_0 is a positive constant.

Set

$$a = \mathbf{E} X_1 e^{\varkappa X_1}, \ b = \mathbf{E} X_1.$$

There are *laws of large numbers* for the random values T_x and T (see [2]): if conditions (1)-(3) hold, then, as $x \to \infty$,

$$\left\{\frac{T_x}{\ln x} \mid T_x < \infty\right\} \xrightarrow{\mathbf{P}} \frac{1}{a}$$

If, in addition, for some $\delta > 0$ $\mathbf{E} \left(\ln^{+} \eta_{1} \right)^{1+\delta} < +\infty,$ then, as $x \to \infty,$ $\left\{ \frac{T}{\ln x} \middle| T_{x} < \infty \right\} \xrightarrow{\mathbf{P}} \frac{1}{a} - \frac{1}{b}.$

In addition, we assume that $\mathbf{E}\left(X_{1}^{2}\exp\left(\varkappa X_{1}\right)\right) < +\infty. \quad (4)$ Set

$$\sigma^2 = \mathbf{E}\left(X_1^2 \exp\left(\varkappa X_1\right)\right) - a^2.$$

Let $B = \{B(t), t \in [0, 1]\}$ be a standard Brownian motion and the symbol \xrightarrow{D} means convergence in distribution in the space D[0, 1]with the Skorokhod topology. The following *functional limit theorem* for the first passage time to different levels is valid (see [3]).

Theorem 1. If $\{\xi_n, n \in \mathbb{N}_0\}$ is a subcritical BPRE and conditions (1)-(4) hold, then, as $x \to +\infty$, $\left\{ \frac{T_{x^t} - \frac{t \ln x}{a}}{\sigma \sqrt{\frac{\ln x}{a^3}}}, t \in [0, 1] \middle| T_x < \infty \right\} \xrightarrow{D} B.$ Also the following *functional limit theorem* for the size of different generations is valid.

Theorem 2. If $\{\xi_n, n \in \mathbb{N}_0\}$ is a subcritical BPRE and conditions (1)-(4) hold, then, as $y \to +\infty$,

$$\left\{ \frac{\ln \xi_{\left\lfloor \frac{ty}{a} \right\rfloor} - ty}{\sigma \sqrt{\frac{y}{a}}}, t \in [0, 1) \middle| T_{e^{y}} < \infty \right\} \xrightarrow{D} B.$$

We notice that in the theorem 2 the variable t belongs to the set [0, 1). The symbol \xrightarrow{D} in this theorem means convergence in distribution in the space D[0, u] with the Skorokhod topology for an arbitrary fixed $u \in$ (0, 1). A few words about some ideas of the proof of the theorems. Denote Δ the set of probability measures on the set of nonnegative integers. Introduce on Δ the matric of total variation, then Δ is a complete separable metric space. Suppose that the probability measure Q_n corresponds to the generating function $f_n(s)$. Go to the new probability measure $\widetilde{\mathbf{P}}$ and the corresponding mathematical expectation $\widetilde{\mathbf{E}}$ supposing for any $n \in \mathbb{N}$ and any measurable finite number function g defined on the set $\Delta^n \times \mathbb{N}_0^n$ that

 $\widetilde{\mathbf{E}}g\left(Q_{1},\ldots,Q_{n};\xi_{1},\ldots,\xi_{n}\right) =$ $= \mathbf{E}e^{\varkappa S_{n}}g\left(Q_{1},\ldots,Q_{n};\xi_{1},\ldots,\xi_{n}\right).$

Concerning this measure the sequence $\{\xi_n\}$ is a supercritical BPRE and sequence $\{Q_n\}$ is the random environment of the BPRE. Notice that $\widetilde{\mathbf{E}}X_1 = a$.

The sequence $\{\xi_n / \exp S_n\}$ for a fixed random environment is a nonnegative martingale, therefore $\widetilde{\mathbf{P}}$ -a.s. there is the limit

$$\lim_{n \to \infty} \frac{\xi_n}{\exp S_n} = W < +\infty.$$

For a supercritical BPRE the following two events are important:

$$D = \left\{ \lim_{n \to \infty} \xi_n = +\infty \right\},$$
$$D^* = \left\{ W > 0 \right\}.$$

The first event is called the *set of nonextinction* and the second event is called the *set of natural growth*. It is clear that

$$D^* \subset D.$$

If conditions (1)-(3) hold, then $\widetilde{\mathbf{P}}(D) > 0.$

It is typical for supercritical branching processes.

The sets D and D^* are indistinguishable in probability sense, that is

 $\widetilde{\mathbf{P}}\left(D\bigtriangleup D^*\right)=0.$

The set D is approximated, on the one hand, by the set $G_k = \{\xi_k > 0\}$: $\lim_{k \to \infty} \widetilde{\mathbf{P}} (D \bigtriangleup G_k) = 0,$ and, on the other hand, by the set $D_x = \{T_x < +\infty\}$: $\lim_{x \to +\infty} \widetilde{\mathbf{P}} (D \bigtriangleup D_x) = 0.$

Set for
$$\varepsilon \in (0, 1/2)$$

$$A_k(\varepsilon) = \left\{ \sup_{n: n > k} \left| \frac{e^{S_n}}{\xi_n} - \frac{e^{S_k}}{\xi_k} \right| \le \varepsilon \frac{e^{S_k}}{\xi_k} \right\}.$$

It is clear that $A_k(\varepsilon) \cap D^*$ and D^* are close.

Introduce the random event

$$D_{x,k} = D \cap D_x \cap \{T_x > k\} \cap A_k(\varepsilon) ,$$

which has an important significance in the theory.

It turns out that D_x and G_k are approximated by the set $D_{x,k}$:

 $\lim_{k \to \infty} \limsup_{x \to +\infty} \widetilde{\mathbf{P}} \left(D_x \bigtriangleup D_{x,k} \right) = 0,$ $\lim_{k \to \infty} \limsup_{x \to +\infty} \widetilde{\mathbf{P}} \left(G_k \bigtriangleup D_{x,k} \right) = 0.$

If the event $D_{x,k}$ is valid, then

 $\ln \xi_n \approx S_n,$

and $\{S_n\}$ is a random walk with a positive drift, for which there is the well advanced *renewal theory*.

Recall some facts of this theory. Let $\{S_n\}$ be a random walk with positive drift a. Set for x > 0

$$\mathcal{T}_x = \min\left\{n : S_n > x\right\}.$$

The following law of large number is valid: almost sure, as $x \to \infty$,

$$\frac{\mathcal{T}_x}{x} \to \frac{1}{a}.$$

Suppose that the variance σ^2 of a step of the random walk is finite and positive. For arbitrary x > 0introduce the random process Z_x :

$$Z_x(t) = \frac{\mathcal{T}_{tx} - \frac{tx}{a}}{\sigma \sqrt{\frac{x}{a^3}}}, \quad t \ge 0.$$

The following functional limit theorem is valid (see [4])): as $x \to \infty$,

$$\{Z_x(t), t \in [0,1]\} \xrightarrow{D} B.$$

At last for the random walk $\{S_n\}$ the following functional limit theorem is valid: as $n \to \infty$,

$$\left\{\frac{S_{\lfloor nt \rfloor} - nta}{\sigma\sqrt{n}}, \ t \in [0,1]\right\} \xrightarrow{D} B.$$

The mentioned laws of large numbers and functional limit theorems for BPRE are corollaries of the corresponding theorems of the renewal theory.

References

1. Afanasyev V. I. On the maximum of a subcritical BPRE. *Stochastic Processes and their Applications*, 2001, vol. 93, No 1, p. 84-107.

 Afanasyev V. I. High level subcritical BPRE. Proceedings of the Steklov Institute of Mathematics, 2013, vol.
 282, pp. 4-14. 3. Afanasyev V. I. Functional limit theorems for high level subcritical BPRE. *Diskretnaya Matematika*, 2014, v. 26, No 2, p. 6–24.

v. 26, No 2, p. 6–24. 4. *Gut A*. Stopped random walks. – New York: Springer-Verlag, 1988.