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Let {ξn, n ∈ N0} be a branching
process in a random environment
(BPRE). It is defined by a sequence
of independent and identically distributed
generating functions {fn (s) , n ∈ N}.
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Note that ξn is the size of the nth
generation (we assume that ξ0 =
1). The generating function fn (s),
s ∈ [0, 1], defines the reproduction
law for the particles in the (n− 1)th
generation, n ∈ N.
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Assuming that f ′1 (1) ∈ (0,+∞)
a.s., we setXi = ln f ′i (1) for i ∈ N.
Note thatX1, X2, . . . are independent
and identically distributed random
variables. Introduce the associated
random walk

S0 = 0, Sn =

n∑
i=1

Xi, n ∈ N.

4



Suppose that the process {ξn} is
subcritical, i.e. EX1 < 0, and there
exists a positive number κ ∈ [0, 1]
such that

EeκX1 = 1, E |X1| eκX1 < +∞.
(1)
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Condition (1) is classical for random
walk with a negative drift and allows
one to pass to conjugate random
walk with a positive drift.
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In addition, we assume that

Eξ1 ln (ξ1 + 1) e(κ−1)X1 < +∞,
(2)

and if κ ≥ 1, then there exists a
number p > κ such that

E
(
ξ
p
1e

(κ−p)X1
)
< +∞. (3)
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Introduce the first passage time
of the process {ξn} to a level x ≥
1:

Tx = min {n : ξn > x} ,
and the lifetime of the process {ξn}:

T = min {n : ξn = 0} .
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It is known (see [1]) that if conditions
(1)-(3) hold, then, as x→∞,

P (Tx <∞) ∼ c0x
−κ,

where c0 is a positive constant.
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Set

a = EX1e
κX1, b = EX1.

There are laws of large numbers for
the random values Tx and T (see
[2]): if conditions (1)-(3) hold, then,
as x→∞,{

Tx
lnx

∣∣∣∣ Tx <∞} P→ 1

a
.
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If, in addition, for some δ > 0

E
(
ln+ η1

)1+δ
< +∞,

then, as x→∞,{
T

lnx

∣∣∣∣ Tx <∞} P→ 1

a
− 1

b
.
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In addition, we assume that

E
(
X2

1 exp (κX1)
)
< +∞. (4)

Set

σ2 = E
(
X2

1 exp (κX1)
)
− a2.
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Let B = {B (t) , t ∈ [0, 1]} be
a standard Brownian motion and
the symbol D→ means convergence
in distribution in the space D [0, 1]
with the Skorokhod topology.
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The following functional limit theorem
for the first passage time to different
levels is valid (see [3]).
Theorem 1. If {ξn, n ∈ N0} is

a subcritical BPRE and conditions
(1)-(4) hold, then, as x→ +∞,Txt −

t lnx
a

σ
√

lnx
a3

, t ∈ [0, 1]

∣∣∣∣∣∣∣Tx <∞
 D→ B.
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Also the following functional limit
theorem for the size of different generations
is valid.
Theorem 2. If {ξn, n ∈ N0} is

a subcritical BPRE and conditions
(1)-(4) hold, then, as y → +∞,

ln ξ⌊ty
a

⌋ − ty
σ
√
y
a

, t ∈ [0, 1)

∣∣∣∣∣∣∣Tey <∞
 D→ B.
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We notice that in the theorem 2
the variable t belongs to the set
[0, 1). The symbol D→ in this theorem
means convergence in distribution
in the spaceD [0, u] with the Skorokhod
topology for an arbitrary fixed u ∈
(0, 1).
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A few words about some ideas of
the proof of the theorems. Denote
∆ the set of probability measures
on the set of nonnegative integers.
Introduce on ∆ the matric of total
variation, then ∆ is a complete separable
metric space. Suppose that the probability
measureQn corresponds to the generating
function fn (s).
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Go to the new probability measure
P̃ and the corresponding mathematical
expectation Ẽ supposing for any n ∈
N and any measurable finite number
function g defined on the set ∆n×
Nn0 that

Ẽg (Q1, . . . , Qn; ξ1, . . . , ξn) =

= EeκSng (Q1, . . . , Qn; ξ1, . . . , ξn) .
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Concerning this measure the sequence
{ξn} is a supercritical BPRE and
sequence {Qn} is the random environment
of the BPRE. Notice that ẼX1 =
a.
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The sequence {ξn/ expSn} for a
fixed random environment is a nonnegative
martingale, therefore P̃-a.s. there
is the limit

lim
n→∞

ξn
expSn

= W < +∞.
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For a supercritical BPRE the following
two events are important:

D =
{

lim
n→∞

ξn = +∞
}
,

D∗ = {W > 0} .
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The first event is called the set of
nonextinction and the second event
is called the set of natural growth.
It is clear that

D∗ ⊂ D.
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If conditions (1)-(3) hold, then

P̃ (D) > 0.

It is typical for supercritical branching
processes.
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The setsD andD∗ are indistinguishable
in probability sense, that is

P̃ (D4D∗) = 0.
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The set D is approximated, on
the one hand, by the setGk = {ξk > 0}:

lim
k→∞

P̃ (D4Gk) = 0,

and, on the other hand, by the set
Dx = {Tx < +∞}:

lim
x→+∞

P̃ (D4Dx) = 0.
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Set for ε ∈ (0, 1/2)

Ak (ε) =

{
sup

n: n>k

∣∣∣∣∣eSnξn − eSk

ξk

∣∣∣∣∣ ≤ ε
eSk

ξk

}
.

It is clear that Ak (ε)∩D∗ and D∗
are close.
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Introduce the random event

Dx,k = D∩Dx∩{Tx > k}∩Ak (ε) ,

which has an important significance
in the theory.
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It turns out that Dx and Gk are
approximated by the set Dx,k:

lim
k→∞

lim sup
x→+∞

P̃
(
Dx4Dx,k

)
= 0,

lim
k→∞

lim sup
x→+∞

P̃
(
Gk 4Dx,k

)
= 0.
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If the event Dx,k is valid, then

ln ξn ≈ Sn,

and {Sn} is a random walk with a
positive drift, for which there is the
well advanced renewal theory.
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Recall some facts of this theory.
Let {Sn} be a random walk with
positive drift a. Set for x > 0

Tx = min {n : Sn > x} .
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The following law of large number
is valid: almost sure, as x→∞,

Tx
x
→ 1

a
.
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Suppose that the variance σ2 of
a step of the random walk is finite
and positive. For arbitrary x > 0
introduce the random process Zx:

Zx (t) =
Ttx − tx

a

σ
√

x
a3

, t ≥ 0.
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The following functional limit theorem
is valid (see [4])): as x→∞,

{Zx (t) , t ∈ [0, 1]} D→ B.
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At last for the random walk {Sn}
the following functional limit theorem
is valid: as n→∞,{
Sbntc − nta

σ
√
n

, t ∈ [0, 1]

}
D→ B.
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The mentioned laws of large numbers
and functional limit theorems for
BPRE are corollaries of the corresponding
theorems of the renewal theory.
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