Local limits of conditioned Galton-Watson trees

R. Abraham - J.F. Delmas

WBPA 2015

R. Abraham - J.F. Delmas

Local limits of conditioned Galton-Watson trees

WBPA 2015 1 / 24

-

The set of discrete trees

Let $\mathcal{U} = \bigcup_{n=0}^{+\infty} (\mathbb{N}^*)^n$ be the set of finite sequences of positive integers with the convention $(\mathbb{N}^*)^0 = \{\emptyset\}$.

A tree **t** is a sub-set of \mathcal{U} such that

- Ø ∈ t
- If $ui \in \mathbf{t}$, then $u \in \mathbf{t}$.
- For every $u \in \mathbf{t}$, there exists an integer $k_u(\mathbf{t})$ such that

We denote by \mathbb{T} the set of discrete trees.

The local topology

For $u = i_1 i_2 \dots i_n \in \mathcal{U}$, we denote by |u| = n the generation of the node u. If $\mathbf{t} \in \mathbb{T}$, for every integer h, we define the truncation of the tree \mathbf{t} at height h by

 $r_h(\mathbf{t}) = \{u \in \mathbf{t}, |u| \le h\}.$

イロト イポト イヨト イヨト 一日

The local topology

For $u = i_1 i_2 \dots i_n \in \mathcal{U}$, we denote by |u| = n the generation of the node u. If $\mathbf{t} \in \mathbb{T}$, for every integer h, we define the truncation of the tree \mathbf{t} at height h by

$$r_h(\mathbf{t}) = \{ u \in \mathbf{t}, \ |u| \leq h \}.$$

We define on ${\mathbb T}$ the distance

$$d(\mathbf{t},\mathbf{t}') = 2^{-\sup\{h, r_h(\mathbf{t})=r_h(\mathbf{t}')\}}.$$

The local topology

For $u = i_1 i_2 \dots i_n \in \mathcal{U}$, we denote by |u| = n the generation of the node u. If $\mathbf{t} \in \mathbb{T}$, for every integer h, we define the truncation of the tree \mathbf{t} at height h by

$$r_h(\mathbf{t}) = \{ u \in \mathbf{t}, \ |u| \leq h \}.$$

We define on $\ensuremath{\mathbb{T}}$ the distance

$$d(\mathbf{t},\mathbf{t}') = 2^{-\sup\{h, r_h(\mathbf{t})=r_h(\mathbf{t}')\}}.$$

A sequence of trees (t_n) converges locally to t if, for every height h,

 $r_h(\mathbf{t}_n) = r_h(\mathbf{t})$ for *n* large enough.

A sequence of random trees (T_n) converges in law to a random tree T with respect to this distance if for every h and every tree $\mathbf{t} \in \mathbb{T}^{(h)}$,

$$\mathbb{P}(r_h(T_n) = \mathbf{t}) \longrightarrow \mathbb{P}(r_f(T) = \mathbf{t}).$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Conditioning on non-extinction

Theorem (Kesten, 1986)

Let *p* be a critical or sub-critical offspring distribution. Let τ_n be a random tree whose distribution is those of τ conditioned on $\{H(\tau) \ge n\}$. Then

$$au_n \stackrel{(d)}{\longrightarrow} au^*.$$

• The nodes are either normal or special.

(日)、

- The nodes are either normal or special.
- The root is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution $p^*(n) := \frac{1}{\mu}np(n)$.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_μnp(n).
- Children of normal nodes are all normal.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_μnp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_μnp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either *normal* or *special*.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_μnp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p*(n) := ¹/_unp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

We suppose that *p* is <u>critical</u>.

- Aldous-Pitman (1998) : conditioning on the total progeny of the tree.
- Curien-Kortchemski (2014) : conditioning on the number of leaves

In these cases, we still have

$$\tau_n \xrightarrow{(d)} \tau^*.$$

If $\mathbf{t},\mathbf{t}'\in\mathbb{T}$ and $x\in\mathcal{L}_0(\mathbf{t})$, we denote by

$$\mathbf{t} \circledast_{\mathbf{x}} \mathbf{t}' = \mathbf{t} \cup \{\mathbf{x}\mathbf{v}, \mathbf{v} \in \mathbf{t}'\}$$

the grafting of \mathbf{t}' on the leaf x of \mathbf{t} .

・ 日 ト ・ 同 ト ・ 回 ト ・

If $\mathbf{t},\mathbf{t}'\in\mathbb{T}$ and $x\in\mathcal{L}_0(\mathbf{t}),$ we denote by

$$\mathbf{t} \circledast_{\mathbf{x}} \mathbf{t}' = \mathbf{t} \cup \{\mathbf{x}\mathbf{v}, \mathbf{v} \in \mathbf{t}'\}$$

the grafting of \mathbf{t}' on the leaf x of \mathbf{t} .

We denote by $\mathbb{T}(\mathbf{t}, x)$ the set of all trees obtained by grafting some tree on the leaf *x* of **t**.

If $\mathbf{t},\mathbf{t}'\in\mathbb{T}$ and $x\in\mathcal{L}_0(\mathbf{t})$, we denote by

$$\mathbf{t} \circledast_{\mathbf{x}} \mathbf{t}' = \mathbf{t} \cup \{\mathbf{x}\mathbf{v}, \mathbf{v} \in \mathbf{t}'\}$$

the grafting of \mathbf{t}' on the leaf x of \mathbf{t} .

We denote by $\mathbb{T}(\mathbf{t}, x)$ the set of all trees obtained by grafting some tree on the leaf *x* of **t**.

We denote by \mathbb{T}_0 the set of finite trees and \mathbb{T}_1 the set of trees that have a single infinite branch.

If $\mathbf{t},\mathbf{t}'\in\mathbb{T}$ and $x\in\mathcal{L}_0(\mathbf{t}),$ we denote by

$$\mathbf{t} \circledast_{\mathbf{x}} \mathbf{t}' = \mathbf{t} \cup \{\mathbf{x}\mathbf{v}, \mathbf{v} \in \mathbf{t}'\}$$

the grafting of \mathbf{t}' on the leaf x of \mathbf{t} .

We denote by $\mathbb{T}(\mathbf{t}, x)$ the set of all trees obtained by grafting some tree on the leaf *x* of **t**.

We denote by \mathbb{T}_0 the set of finite trees and \mathbb{T}_1 the set of trees that have a single infinite branch.

Lemme

A sequence $(T_n, n \in \mathbb{N})$ of random trees that a.s. belong to $\mathbb{T}_0 \cup \mathbb{T}_1$ converges in distribution to a tree T that also a.s. belongs to $\mathbb{T}_0 \cup \mathbb{T}_1$ if and only if, for every finite tree **t** and every leaf *x* of **t**,

$$\lim_{n\to+\infty}\mathbb{P}(T_n\in\mathbb{T}(\mathbf{t},x))=\mathbb{P}(T\in\mathbb{T}(\mathbf{t},x)) \text{ et } \lim_{n\to+\infty}\mathbb{P}(T_n=\mathbf{t})=\mathbb{P}(T=\mathbf{t}).$$

Functionals

Let $A : \mathbb{T} \longrightarrow \mathbb{N} \cup \{\infty\}$ be a real-valued function defined on \mathbb{T} that is finite on \mathbb{T}_0 .

We want to condition a critical or sub-critical Galton-Watson tree τ on $\{A(\tau) \ge n\}$ or on $\{A(\tau) = n\}$.

We will consider three different assumptions on the functional A:

• (Identity)
$$A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\tilde{\mathbf{t}})$$

All these properties are supposed to hold for $A(t \otimes_x \tilde{t})$ large enough.

・ロト ・四ト ・ヨト

Functionals

Let $A : \mathbb{T} \longrightarrow \mathbb{N} \cup \{\infty\}$ be a real-valued function defined on \mathbb{T} that is finite on \mathbb{T}_0 .

We want to condition a critical or sub-critical Galton-Watson tree τ on $\{A(\tau) \ge n\}$ or on $\{A(\tau) = n\}$.

We will consider three different assumptions on the functional A:

• (Identity)
$$A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\tilde{\mathbf{t}})$$

• (Monotonicity) $A(t \circledast_x \tilde{t}) \ge A(\tilde{t})$

All these properties are supposed to hold for $A(t \otimes_x \tilde{t})$ large enough.

イロト イロト イヨト イヨト

Functionals

Let $A : \mathbb{T} \longrightarrow \mathbb{N} \cup \{\infty\}$ be a real-valued function defined on \mathbb{T} that is finite on \mathbb{T}_0 .

We want to condition a critical or sub-critical Galton-Watson tree τ on $\{A(\tau) \ge n\}$ or on $\{A(\tau) = n\}$.

We will consider three different assumptions on the functional A:

- (Identity) $A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\tilde{\mathbf{t}})$
- (Monotonicity) $A(t \circledast_x \tilde{t}) \ge A(\tilde{t})$
- (Additivity) There exists a function $D(\mathbf{t}, x) \ge 0$ such that

$$A(\mathbf{t} \circledast_x \mathbf{\tilde{t}}) = A(\mathbf{\tilde{t}}) + D(\mathbf{t}, x).$$

All these properties are supposed to hold for $A(t \otimes_x \tilde{t})$ large enough.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Convergence with the identity assumption

Theorem

Let *p* be a **critical** offspring distribution, let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Identity* assumption. Then

$$\operatorname{dist}(\tau|A(\tau)=n)\longrightarrow\operatorname{dist}(\tau^*)$$

and

$$\operatorname{dist}(\tau|A(\tau) \geq n) \longrightarrow \operatorname{dist}(\tau^*)$$

Conditioning on the maximum out-degree (X. He)

For a tree t, we consider

$$A(\mathbf{t}) = \sup_{u \in \mathbf{t}} k_u(\mathbf{t})$$

its maximal out-degree.

→ E → < E</p>

Conditioning on the maximum out-degree (X. He)

For a tree t, we consider

$$A(\mathbf{t}) = \sup_{u \in \mathbf{t}} k_u(\mathbf{t})$$

its maximal out-degree. The functional $A(\mathbf{t})$ satisfies

$$A(\mathbf{t} \circledast_x \mathbf{\tilde{t}}) = A(\mathbf{\tilde{t}})$$

as soon as $A(t \otimes_x \tilde{t}) \ge A(t)$, which is the *Identity* property.

Conditioning on the maximum out-degree (X. He)

For a tree t, we consider

$$A(\mathbf{t}) = \sup_{u \in \mathbf{t}} k_u(\mathbf{t})$$

its maximal out-degree. The functional $A(\mathbf{t})$ satisfies

$$A(\mathbf{t} \circledast_x \mathbf{\tilde{t}}) = A(\mathbf{\tilde{t}})$$

as soon as $A(t \otimes_x \tilde{t}) \ge A(t)$, which is the *Identity* property. We deduce that, for every critical offspring distribution with unbounded support

$$\operatorname{dist}(\tau|A(\tau)=n) \longrightarrow \operatorname{dist}(\tau^*).$$

Convergence with the monotonicity assumption

Theorem (X. He, 2015)

Let *p* be a **critical** offspring distribution, let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Monotonicity* assumption. Then

$$\operatorname{dist}(\tau|A(\tau) \geq n) \longrightarrow \operatorname{dist}(\tau^*)$$

Convergence with the monotonicity assumption

Theorem (X. He, 2015)

Let *p* be a **critical** offspring distribution, let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Monotonicity* assumption. Then

$$\operatorname{dist}(\tau|A(\tau) \geq n) \longrightarrow \operatorname{dist}(\tau^*)$$

The height of the tree satisfies the monotonicity assumption, we hence recover Kesten's theorem.

Convergence with the additivity assumption

Theorem

Let *p* be a **critical** offspring distribution, let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Additivity* assumption. We suppose moreover that

$$\limsup_{n\to+\infty}\frac{\mathbb{P}(A(\tau)=n+1)}{\mathbb{P}(A(\tau)=n)}\leq 1.$$

Then

$$\operatorname{dist}(\tau|A(\tau)=n)\longrightarrow\operatorname{dist}(\tau^*)$$

Conditioning on the total progeny, critical case

We consider A(t) = #t.

イロト イポト イヨト イヨト

Conditioning on the total progeny, critical case

We consider A(t) = #t. Additivity: $A(t \circledast_x \tilde{t}) = A(t) + A(\tilde{t}) - 1$.

WBPA 2015 13 / 24

▶ < 토▶ < 토▶

Conditioning on the total progeny, critical case

We consider
$$A(\mathbf{t}) = \#\mathbf{t}$$
.
Additivity: $A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\mathbf{t}) + A(\tilde{\mathbf{t}}) - 1$.

Dwass formula(1969)

Let (W_k) be i.i.d. random variables distributed as $\#\tau$. Let (X_k) be i.i.d. random variables with distribution *p*. Then, for every k > 0 and every $n \ge k$,

$$\mathbb{P}(W_1+\cdots+W_k=n)=\frac{k}{n}\mathbb{P}(X_1+\cdots+X_n=n-k).$$

Conditioning on the total progeny, critical case (continuation)

Strong ratio theorem

Let *Y* be a \mathbb{Z} -valued random variable, aperiodic and centered. Let *S_n* be the associated random walk:

$$S_n = \sum_{k=1}^n Y_k.$$

Then

$$\lim_{n \to +\infty} \frac{\mathbb{P}(S_n = \ell)}{\mathbb{P}(S_n = 0)} = \lim_{n \to +\infty} \frac{\mathbb{P}(S_{n+1} = 0)}{\mathbb{P}(S_n = 0)} = 1.$$

Conditioning on the total progeny, critical case (continuation)

Strong ratio theorem

Let *Y* be a \mathbb{Z} -valued random variable, aperiodic and centered. Let *S_n* be the associated random walk:

$$S_n = \sum_{k=1}^n Y_k.$$

Then

$$\lim_{n\to+\infty}\frac{\mathbb{P}(S_n=\ell)}{\mathbb{P}(S_n=0)}=\lim_{n\to+\infty}\frac{\mathbb{P}(S_{n+1}=0)}{\mathbb{P}(S_n=0)}=1.$$

Proposition

Let *p* be a critical aperiodic offspring distribution. Then

$$\operatorname{dist}(\tau | \# \tau = n) \longrightarrow \operatorname{dist}(\tau^*).$$

Nodes with a fixed number of offsprings

Let $\mathcal{A} \subset \mathbb{N}$. For $\mathbf{t} \in \mathbb{T}$, we set

$$\mathcal{L}_{\mathcal{A}}(\mathbf{t}) = \{ u \in \mathbf{t}, \ k_u(\mathbf{t}) \in \mathcal{A} \}$$

and

$$L_{\mathcal{A}}(\mathbf{t}) = \# \mathcal{L}_{\mathcal{A}}(\mathbf{t}).$$

Remark:

- $\mathcal{A} = \mathbb{N}$: total progeny
- $\mathcal{A} = \{0\}$: number of leaves
- $\mathcal{A} = \mathbb{N}^*$: number of internal nodes

 $\mathcal{A} = \{2\}.$

▶ < 프 > < 프</p>

 $\mathcal{A} = \{2\}.$

• 1

R. Abraham - J.F. Delmas

Local limits of conditioned Galton-Watson trees

3 WBPA 2015 16/24

-

▶ ★ 臣 ▶ ★

 $\mathcal{A} = \{2\}.$

• 1

WBPA 2015 16 / 24

R. Abraham - J.F. Delmas

 $\mathcal{A} = \{2\}.$

R. Abraham - J.F. Delmas

WBPA 2015 16 / 24

 $\mathcal{A} = \{2\}.$

R. Abraham - J.F. Delmas

WBPA 2015 16 / 24

< ≣ >

 $\mathcal{A} = \{2\}.$

R. Abraham - J.F. Delmas

WBPA 2015 16 / 24

< ≣ >

 $\mathcal{A} = \{2\}.$

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree $\tau_{\mathcal{A}}$ conditionally given $\{\mathcal{L}_{\mathcal{A}}(\tau) \neq \emptyset\}$ is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas

Local limits of conditioned Galton-Watson trees

WBPA 2015 16 / 24

Conditioning on $L_{\mathcal{A}}(\tau)$

Proposition

Let *p* be a critical offspring distribution and $\mathcal{A} \subset \mathbb{N}$. Then

$$\operatorname{dist}(\tau|L_{\mathcal{A}}(\tau)=n)\longrightarrow \operatorname{dist}(\tau^*).$$

R. Abraham - J.F. Delmas

Local limits of conditioned Galton-Watson trees

WBPA 2015 17 / 24

イロト イポト イヨト イヨト

Sub-critical case : extension of the additive property

Theorem

Let *p* be a **sub-critical** offspring distribution with mean μ , let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Additivity* assumption with $D(\mathbf{t}, x) = |x|$. We suppose moreover that

$$\limsup_{n\to+\infty}\frac{\mathbb{P}(A(\tau)=n+1)}{\mathbb{P}(A(\tau)=n)}\leq \mu.$$

Then

$$\operatorname{dist}(\tau|A(\tau)=n) \longrightarrow \operatorname{dist}(\tau^*)$$

Sub-critical case : extension of the additive property

Theorem

Let *p* be a **sub-critical** offspring distribution with mean μ , let τ be the associated Galton-Watson tree. We suppose that *A* satisfies the *Additivity* assumption with $D(\mathbf{t}, x) = |x|$. We suppose moreover that

$$\limsup_{n\to+\infty}\frac{\mathbb{P}(A(\tau)=n+1)}{\mathbb{P}(A(\tau)=n)}\leq \mu.$$

Then

$$\operatorname{dist}(\tau|A(\tau)=n)\longrightarrow\operatorname{dist}(\tau^*)$$

This theorem only applies for $A(\mathbf{t}) = H(\mathbf{t})$.

Sub-critical case: an equivalent offspring distribution for $L_{\mathcal{A}}$

We set

$$p_{ heta}(k) = egin{cases} c_{\mathcal{A}}(heta) heta^k p(k) & ext{si } k \in \mathcal{A}, \ heta^{k-1} p(k) & ext{si } k
ot\in \mathcal{A} \end{cases}$$

with

$$c_{\mathcal{A}} = rac{1 - \sum_{k \notin \mathcal{A}} \theta^{k-1} p(k)}{\sum_{k \in \mathcal{A}} \theta^k p(k)}$$

We denote by *I* the set of θ for which p_{θ} is a probability distribution on \mathbb{N} .

1

WBPA 2015 19 / 24

Sub-critical case: an equivalent offspring distribution for $L_{\mathcal{A}}$

We set

$$p_{ heta}(k) = egin{cases} c_{\mathcal{A}}(heta) heta^k p(k) & ext{si } k \in \mathcal{A}, \ heta^{k-1} p(k) & ext{si } k
ot\in \mathcal{A} \end{cases}$$

with

$$c_{\mathcal{A}} = rac{1 - \sum_{k
otin \mathcal{A}} \Theta^{k-1} p(k)}{\sum_{k \in \mathcal{A}} \Theta^k p(k)}$$

We denote by *I* the set of θ for which p_{θ} is a probability distribution on \mathbb{N} .

1

Proposition

For every $\theta \in I$ and every $n \in \mathbb{N}^*$,

$$\operatorname{dist}(\tau|L_{\mathcal{A}}(\tau)=n)=\operatorname{dist}(\tau_{\theta}|L_{\mathcal{A}}(\tau_{\theta})=n).$$

Sub-critical case: an equivalent offspring distribution for $L_{\mathcal{A}}$

We set

$$p_{ heta}(k) = egin{cases} c_{\mathcal{A}}(heta) heta^k p(k) & ext{si } k \in \mathcal{A}, \ heta^{k-1} p(k) & ext{si } k
ot\in \mathcal{A} \end{cases}$$

with

$$c_{\mathcal{A}} = rac{1 - \sum_{k
otin \mathcal{A}} \Theta^{k-1} p(k)}{\sum_{k \in \mathcal{A}} \Theta^k p(k)}$$

We denote by *I* the set of θ for which p_{θ} is a probability distribution on \mathbb{N} .

Proposition

For every $\theta \in I$ and every $n \in \mathbb{N}^*$,

$$\operatorname{dist}(\tau|L_{\mathcal{A}}(\tau)=n)=\operatorname{dist}(\tau_{\theta}|L_{\mathcal{A}}(\tau_{\theta})=n).$$

Remark:

- $\mathcal{A} = \mathbb{N}$: Kennedy 1975
- $\mathcal{A} = \{0\}$: Abraham-Delmas-He 2012

R. Abraham - J.F. Delmas

WBPA 2015 19 / 24

Conditioning on $L_{\mathcal{A}}$, generic case

Proposition

Let *p* be a sub-critical offspring distribution such that there exists some $\theta_c \in I$ such that p_{θ_c} is critical (such a distribution is said to be generic for \mathcal{A}). Then

• θ_c is unique.

• dist
$$(\tau|L_{\mathcal{A}}(\tau) = n) \longrightarrow \text{dist}(\tau_{\theta_c}^*)$$
.

Conditioning on $L_{\mathcal{A}}$, generic case

Proposition

Let *p* be a sub-critical offspring distribution such that there exists some $\theta_c \in I$ such that p_{θ_c} is critical (such a distribution is said to be generic for \mathcal{A}). Then

• θ_c is unique.

• dist
$$(\tau | L_{\mathcal{A}}(\tau) = n) \longrightarrow dist(\tau_{\theta_c}^*).$$

If such a θ_c does not exist (non-generic case), then a condensation phenomenon appears, Jonnsson-Stefansson 2011, Janson 2012.

If *p* is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

• The nodes have two types, normal and special.

イロト イポト イヨト イヨト

If *p* is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special

イロト イポト イヨト イヨト

If *p* is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special
- Normal nodes reproduce according to p.

If *p* is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special
- Normal nodes reproduce according to *p*.
- Special nodes reproduce according to

$$ilde{p}(n) = egin{cases} np(n) & ext{si} \ n \in \mathbb{N}, \ 1-\mu & ext{si} \ n = +\infty. \end{cases}$$

If p is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special
- Normal nodes reproduce according to *p*.
- Special nodes reproduce according to

$$\widetilde{p}(n) = egin{cases} np(n) & ext{si } n \in \mathbb{N}, \ 1-\mu & ext{si } n = +\infty. \end{cases}$$

Children of a normal node are normal.

If p is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special
- Normal nodes reproduce according to *p*.
- Special nodes reproduce according to

$$ilde{p}(n) = egin{cases} n p(n) & ext{si } n \in \mathbb{N}, \ 1-\mu & ext{si } n = +\infty. \end{cases}$$

- Children of a normal node are normal.
- When a special node has a finite number of children, all of them are normal but one uniformly chosen at random.

If p is a sub-critical offspring distribution, we define the associated condensation tree $\tau^{\infty}(p)$ by

- The nodes have two types, normal and special.
- The root is special
- Normal nodes reproduce according to *p*.
- Special nodes reproduce according to

$$ilde{p}(n) = egin{cases} n p(n) & ext{si } n \in \mathbb{N}, \ 1-\mu & ext{si } n = +\infty. \end{cases}$$

- Children of a normal node are normal.
- When a special node has a finite number of children, all of them are normal but one uniformly chosen at random.
- When a special node has an infinite number of children, all of them are normal.

R. Abraham - J.F. Delmas

3 WBPA 2015 22/24

ъ

▶ ▲ 臣 ▶ ▲

Conditioning on $L_{\mathcal{A}}$, non-generic case

Theorem

Let *p* be a non-generic offspring distribution for \mathcal{A} . We set $\theta_{\infty} = \max I$. Then

$$\operatorname{dist}(\tau|L_{\mathcal{A}}(\tau)=n) \longrightarrow \operatorname{dist}(\tau^{\infty}(p_{\theta_{\infty}})).$$

Lemme

Let p be a sub-critical offspring distribution, let φ be its generating function, and let ρ be the radius of convergence of φ .

• If $\rho = +\infty$ or if $g'(\rho) \ge 1$, then p is generic for all \mathcal{A} .

Lemme

Let p be a sub-critical offspring distribution, let φ be its generating function, and let ρ be the radius of convergence of φ .

- If $\rho = +\infty$ or if $g'(\rho) \ge 1$, then ρ is generic for all \mathcal{A} .
- If $\rho = 1$, then *p* is non-generic for every \mathcal{A} .

Lemme

Let p be a sub-critical offspring distribution, let φ be its generating function, and let ρ be the radius of convergence of φ .

- If $\rho = +\infty$ or if $g'(\rho) \ge 1$, then p is generic for all \mathcal{A} .
- If $\rho = 1$, then *p* is non-generic for every \mathcal{A} .
- If 1 $<
 ho < +\infty$ and g'(
 ho) < 1 then p is non-generic for ${\mathcal A}$ iff

$$\mathbb{E}[Y|Y \in \mathcal{A}] < \frac{1 - \varphi'(\rho)}{\rho - \varphi(\rho)}$$

where *Y* is distributed according to $p_{\mathbb{N},\rho}$.

In, p is non-generic for $\{0\}$ but is generic for $\{k\}$ for k large enough.

Lemme

Let p be a sub-critical offspring distribution, let φ be its generating function, and let ρ be the radius of convergence of φ .

- If $\rho = +\infty$ or if $g'(\rho) \ge 1$, then p is generic for all \mathcal{A} .
- If $\rho = 1$, then *p* is non-generic for every \mathcal{A} .
- If $1 < \rho < +\infty$ and $g'(\rho) < 1$ then p is non-generic for $\mathcal A$ iff

$$\mathbb{E}[Y|Y \in \mathcal{A}] < \frac{1 - \varphi'(\rho)}{\rho - \varphi(\rho)}$$

where *Y* is distributed according to $p_{\mathbb{N},\rho}$.

In, *p* is non-generic for $\{0\}$ but is generic for $\{k\}$ for *k* large enough.

• There exists some distributions that are generic for $\mathbb N$ and not for $\{0\}.$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <