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The set of discrete trees

Let U =
⋃+∞

n=0(N∗)n be the set of finite sequences of positive integers with the
convention (N∗)0 = { /0}.
A tree t is a sub-set of U such that

/0 ∈ t
If ui ∈ t, then u ∈ t.
For every u ∈ t, there exists an integer ku(t) such that

ui ∈ t ⇐⇒ 0≤ i ≤ ku(t).
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21 22
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31

311 312

We denote by T the set of discrete trees.
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The local topology

For u = i1i2 . . . in ∈U, we denote by |u|= n the generation of the node u.
If t ∈ T, for every integer h, we define the truncation of the tree t at height h by

rh(t) = {u ∈ t, |u| ≤ h}.

We define on T the distance

d(t, t′) = 2−sup{h, rh(t)=rh(t′)}.

A sequence of trees (tn) converges locally to t if, for every height h,

rh(tn) = rh(t) for n large enough.

A sequence of random trees (Tn) converges in law to a random tree T with
respect to this distance if for every h and every tree t ∈ T(h),

P(rh(Tn) = t)−→ P(rf (T ) = t).
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Conditioning on non-extinction

Theorem (Kesten, 1986)

Let p be a critical or sub-critical offspring distribution.
Let τn be a random tree whose distribution is those of τ conditioned on
{H(τ)≥ n}.
Then

τn
(d)−→ τ

∗.
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Kesten’s tree

The nodes are either normal or special.

The root is special.

Normal nodes reproduce according the the
distribution p.

Special nodes reproduce according to the
size-biased distribution p∗(n) := 1

µ n p(n).

Children of normal nodes are all normal.

Children of a special nodes are all normal but
one, uniformly chosen at random, which is
special.
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Other conditionings

We suppose that p is critical.

Aldous-Pitman (1998) : conditioning on the total progeny of the tree.

Curien-Kortchemski (2014) : conditioning on the number of leaves

In these cases, we still have

τn
(d)−→ τ

∗.
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Another caracterization of local convergence

If t, t′ ∈ T and x ∈ L0(t), we denote by

t~x t′ = t∪{xv ,v ∈ t′}

the grafting of t′ on the leaf x of t.

We denote by T(t,x) the set of all trees obtained by grafting some tree on the
leaf x of t.
We denote by T0 the set of finite trees and T1 the set of trees that have a
single infinite branch.

Lemme

A sequence (Tn,n ∈ N) of random trees that a.s. belong to T0∪T1 converges
in distribution to a tree T that also a.s. belongs to T0∪T1 if and only if, for
every finite tree t and every leaf x of t,

lim
n→+∞

P(Tn ∈ T(t,x)) = P(T ∈ T(t,x)) et lim
n→+∞

P(Tn = t) = P(T = t).
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Functionals

Let A : T−→ N∪{∞} be a real-valued function defined on T that is finite on
T0.
We want to condition a critical or sub-critical Galton-Watson tree τ on
{A(τ)≥ n} or on {A(τ) = n}.
We will consider three different assumptions on the functional A:

(Identity) A(t~x t̃) = A(̃t)

(Monotonicity) A(t~x t̃)≥ A(̃t)

(Additivity) There exists a function D(t,x)≥ 0 such that

A(t~x t̃) = A(̃t)+D(t,x).

All these properties are supposed to hold for A(t~x t̃) large enough.
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Convergence with the identity assumption

Theorem

Let p be a critical offspring distribution, let τ be the associated Galton-Watson
tree. We suppose that A satisfies the Identity assumption. Then

dist(τ|A(τ) = n)−→ dist(τ∗)

and
dist(τ|A(τ)≥ n)−→ dist(τ∗)
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Conditioning on the maximum out-degree (X. He)

For a tree t, we consider
A(t) = sup

u∈t
ku(t)

its maximal out-degree.

The functional A(t) satisfies

A(t~x t̃) = A(̃t)

as soon as A(t~x t̃)≥ A(t), which is the Identity property.
We deduce that, for every critical offspring distribution with unbounded support

dist(τ|A(τ) = n)−→ dist(τ∗).
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Convergence with the monotonicity assumption

Theorem (X. He, 2015)

Let p be a critical offspring distribution, let τ be the associated Galton-Watson
tree. We suppose that A satisfies the Monotonicity assumption. Then

dist(τ|A(τ)≥ n)−→ dist(τ∗)

The height of the tree satisfies the monotonicity assumption, we hence recover
Kesten’s theorem.
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Convergence with the additivity assumption

Theorem

Let p be a critical offspring distribution, let τ be the associated Galton-Watson
tree. We suppose that A satisfies the Additivity assumption. We suppose
moreover that

limsup
n→+∞

P(A(τ) = n+1)
P(A(τ) = n)

≤ 1.

Then
dist(τ|A(τ) = n)−→ dist(τ∗)
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Conditioning on the total progeny, critical case

We consider A(t) = #t.

Additivity: A(t~x t̃) = A(t)+A(̃t)−1.

Dwass formula(1969)

Let (Wk) be i.i.d. random variables distributed as #τ.
Let (Xk) be i.i.d. random variables with distribution p.
Then, for every k > 0 and every n ≥ k ,

P(W1 + · · ·+Wk = n) =
k
n
P(X1 + · · ·+Xn = n− k).
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Conditioning on the total progeny, critical case (continuation)

Strong ratio theorem

Let Y be a Z-valued random variable, aperiodic and centered.
Let Sn be the associated random walk:

Sn =
n

∑
k=1

Yk .

Then

lim
n→+∞

P(Sn = `)

P(Sn = 0)
= lim

n→+∞

P(Sn+1 = 0)
P(Sn = 0)

= 1.

Proposition

Let p be a critical aperiodic offspring distribution. Then

dist(τ |#τ = n)−→ dist(τ∗).
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Nodes with a fixed number of offsprings

Let A ⊂ N.
For t ∈ T, we set

LA(t) = {u ∈ t, ku(t) ∈ A}

and
LA(t) = #LA(t).

Remark:

A = N: total progeny

A = {0}: number of leaves

A = N∗: number of internal nodes
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Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

2 3

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

2 3

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

2 3

4 5

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Maping LA(t) onto the nodes of a tree

A = {2}.

1

2

3

4

5

1

2 3

4 5

Lemme (Rizzolo 2014)

If τ is a critical Galton-Watson tree, then the tree τA conditionally given
{LA(τ) 6= /0} is also a critical Galton-Watson tree.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 16 / 24



Conditioning on LA(τ)

Proposition

Let p be a critical offspring distribution and A ⊂ N. Then

dist(τ|LA(τ) = n)−→ dist(τ∗).
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Sub-critical case : extension of the additive property

Theorem
Let p be a sub-critical offspring distribution with mean µ, let τ be the
associated Galton-Watson tree. We suppose that A satisfies the Additivity
assumption with D(t,x) = |x |. We suppose moreover that

limsup
n→+∞

P(A(τ) = n+1)
P(A(τ) = n)

≤ µ.

Then
dist(τ|A(τ) = n)−→ dist(τ∗)

This theorem only applies for A(t) = H(t).
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Sub-critical case: an equivalent offspring distribution for LA

We set

pθ(k) =

{
cA(θ)θ

k p(k) si k ∈ A ,

θk−1p(k) si k 6∈ A
with

cA =
1−∑k 6∈A θk−1p(k)

∑k∈A θk p(k)
·

We denote by I the set of θ for which pθ is a probability distribution on N.

Proposition

For every θ ∈ I and every n ∈ N∗,

dist(τ|LA(τ) = n) = dist(τθ|LA(τθ) = n).

Remark:
A = N : Kennedy 1975
A = {0} : Abraham-Delmas-He 2012
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Conditioning on LA , generic case

Proposition

Let p be a sub-critical offspring distribution such that there exists some θc ∈ I
such that pθc is critical (such a distribution is said to be generic for A). Then

θc is unique.

dist(τ|LA(τ) = n)−→ dist(τ∗
θc
).

If such a θc does not exist (non-generic case), then a condensation
phenomenon appears, Jonnsson-Stefansson 2011, Janson 2012.
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The condensation tree

If p is a sub-critical offspring distribution, we define the associated
condensation tree τ∞(p) by

The nodes have two types, normal and special.

The root is special

Normal nodes reproduce according to p.

Special nodes reproduce according to

p̃(n) =

{
n p(n) si n ∈ N,
1−µ si n =+∞.

Children of a normal node are normal.

When a special node has a finite number of children, all of them are
normal but one uniformly chosen at random.

When a special node has an infinite number of children, all of them are
normal.
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The condensation tree

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 22 / 24



Conditioning on LA , non-generic case

Theorem

Let p be a non-generic offspring distribution for A . We set θ∞ = max I. Then

dist(τ|LA(τ) = n)−→ dist(τ∞(pθ∞
)).
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Generic and non-generic distribution

Lemme
Let p be a sub-critical offspring distribution, let ϕ be its generating function, and
let ρ be the radius of convergence of ϕ.

If ρ =+∞ or if g′(ρ)≥ 1, then p is generic for all A .

If ρ = 1, then p is non-generic for every A .

If 1 < ρ <+∞ and g′(ρ)< 1 then p is non-generic for A iff

E[Y |Y ∈ A]<
1−ϕ′(ρ)

ρ−ϕ(ρ)

where Y is distributed according to pN,ρ.
In, p is non-generic for {0} but is generic for {k} for k large enough.

There exists some distributions that are generic for N and not for {0}.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 24 / 24



Generic and non-generic distribution

Lemme
Let p be a sub-critical offspring distribution, let ϕ be its generating function, and
let ρ be the radius of convergence of ϕ.

If ρ =+∞ or if g′(ρ)≥ 1, then p is generic for all A .

If ρ = 1, then p is non-generic for every A .

If 1 < ρ <+∞ and g′(ρ)< 1 then p is non-generic for A iff

E[Y |Y ∈ A]<
1−ϕ′(ρ)

ρ−ϕ(ρ)

where Y is distributed according to pN,ρ.
In, p is non-generic for {0} but is generic for {k} for k large enough.

There exists some distributions that are generic for N and not for {0}.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 24 / 24



Generic and non-generic distribution

Lemme
Let p be a sub-critical offspring distribution, let ϕ be its generating function, and
let ρ be the radius of convergence of ϕ.

If ρ =+∞ or if g′(ρ)≥ 1, then p is generic for all A .

If ρ = 1, then p is non-generic for every A .

If 1 < ρ <+∞ and g′(ρ)< 1 then p is non-generic for A iff

E[Y |Y ∈ A]<
1−ϕ′(ρ)

ρ−ϕ(ρ)

where Y is distributed according to pN,ρ.
In, p is non-generic for {0} but is generic for {k} for k large enough.

There exists some distributions that are generic for N and not for {0}.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 24 / 24



Generic and non-generic distribution

Lemme
Let p be a sub-critical offspring distribution, let ϕ be its generating function, and
let ρ be the radius of convergence of ϕ.

If ρ =+∞ or if g′(ρ)≥ 1, then p is generic for all A .

If ρ = 1, then p is non-generic for every A .

If 1 < ρ <+∞ and g′(ρ)< 1 then p is non-generic for A iff

E[Y |Y ∈ A]<
1−ϕ′(ρ)

ρ−ϕ(ρ)

where Y is distributed according to pN,ρ.
In, p is non-generic for {0} but is generic for {k} for k large enough.

There exists some distributions that are generic for N and not for {0}.

R. Abraham - J.F. Delmas Local limits of conditioned Galton-Watson trees WBPA 2015 24 / 24


