Sudden death versus slow extinction of branching processes in random environment

Vladimir Vatutin, vatutin@mi.ras.ru

Department of Discrete Mathematics, Steklov Mathematical Institute, Gubkin str. 8, 119991, Moscow, Russia.

Keywords: Branching processes in random environment, stable law

AMS: 60J80, 60G52

Abstract

A branching process Z(n), n = 0, 1, ..., is considered which evolves in a random environment generated by a sequence of iid generating functions $f_0(s), f_1(s), ...$ Let $T = \min\{k : Z(k-1) > 0, Z(k) = 0\}$ be the extinction moment of the process, $S_0 = 0, S_k = \log f'_0(1) + \cdots + \log f'_{k-1}(1), k \ge 1$, be the associated random walk and $\tau(m, n)$ be the left-most point of minimum of $\{S_k, k \ge 0\}$ on the interval [m, n].

Assuming that the distribution of $\log f'_0(1)$ belongs to the domain of attraction of a stable law with parameter $\alpha \in (0, 2]$ and zero mean if $\alpha > 1$, we show that (under the quenched approach and given $T = n \to \infty$) the process approaches the extinction moment by passing through a number of bottlenecks, when the size of the population becomes very small, and periods of recovering, when the size of the population is of order $e^{S_m - S_{\tau(0,m)}}$ if $m < \tau(0,n)$ and of order $e^{S_m - S_{\tau(m,n)}}$ if $m \ge \tau(0,n)$. In particular, the size Z_{n-1} of the population is "not too big" and, therefore, the process dies out in a "natural" way. Similar phenomenon takes place under the annealed approach if $Var \log f'_0(1) < \infty$. If, however, $Var \log f'_0(1) = \infty$ then (under the annealed approach) $\log Z_{n-1}$ is very big, namely, of order $n^{1/\alpha}$. In this case the extinction of the process at moment n may be treated as it's sudden death under very unfavorable environment.

Acknowledgements: The research was supported in part by the DFG-RFBR grant 08-01-91954

References

- Vatutin, V.A. and Kyprianou, A. (2008) Branching processes in random environment die slowly. Proceedings of the Fifth Colloquium on Mathematics and Computer Science. Algorithms, Trees, Combinbinatorics and Probability, September 22-26, Blaubeuren, Germany, pp. 379-400.
- [2] Vatutin, V.A. and Wachtel, V. (2009) Sudden extinction of a critical branching process in random environment. Theory Probab. Appl. (submitted).

Badajoz (Spain)

Workshop on Branching Processes and their Applications April 20-23, 2009