Limit theorem for critical inhomogeneous branching processes with immigration

Márton Ispány, ispany@inf.unideb.hu

Faculty of Informatics, University of Debrecen. Pf.12, Debrecen, Hungary, H-4010

Keywords: Inhomogeneous branching process, limit theorem, square–root process **AMS:** 60J80; 60J27, 60J85

Abstract

A zero start inhomogeneous branching process with immigration (IBPI) $(X_n)_{n \in \mathbb{Z}_+}$ is defined as

$$X_n = \sum_{j=1}^{X_{n-1}} \xi_{n,j} + \varepsilon_n, \quad n \in \mathbb{N}, \qquad X_0 = 0,$$

where $\{\xi_{n,j}, \varepsilon_n : n, j \in \mathbb{N}\}$ are independent non-negative integer-valued random variables such that $\{\xi_{n,j} : j \in \mathbb{N}\}$ are identically distributed for each $n \in \mathbb{N}$. Assume that $m_n := \mathsf{E}\xi_{n,1}, \ \lambda_n := \mathsf{E}\varepsilon_n, \ \sigma_n^2 := \mathsf{Var}\xi_{n,1}, \ b_n^2 := \mathsf{Var}\varepsilon_n$ are finite for all $n \in \mathbb{N}$. The process $(X_n)_{n \in \mathbb{Z}_+}$ is called (nearly) critical if $m_n \to 1$ as $n \to \infty$. Introduce the random step functions

$$\mathcal{X}^{(n)}(t) := X_{|nt|} \quad \text{for } t \in \mathbb{R}_+, \ n \in \mathbb{N}.$$

We prove the following generalization of a result of Wei and Winnicki [1].

Theorem. Suppose that $\sum_{n=1}^{\infty} |m_n - 1| < \infty$; $\sigma_n^2 \to \sigma^2 \ge 0$, $\lambda_n \to \lambda \ge 0$, $b_n^2 \to b^2 \ge 0$, and $n^{-2} \sum_{k,j=1}^n \mathsf{E}\left(|\xi_{k,j} - m_k|^2 \mathbb{1}_{\{|\xi_{k,j} - m_k| > \theta_n\}}\right) \to 0$ for all $\theta > 0$ as $n \to \infty$. Then $n^{-1} \mathcal{X}^{(n)} \xrightarrow{\mathcal{D}} \mathcal{X}$ as $n \to \infty$,

that is, weakly in the Skorokhod space $\mathbb{D}(\mathbb{R}_+, \mathbb{R})$, where $(\mathcal{X}(t))_{t \in \mathbb{R}_+}$ is the unique solution of a stochastic differential equation (SDE)

$$d\mathcal{X}(t) = \lambda \, dt + \sigma \sqrt{\mathcal{X}_{+}(t)} \, dW(t), \qquad t \in \mathbb{R}_{+},$$

with initial condition $\mathcal{X}(0) = 0$, where $x_+ := \max\{x, 0\}$ and $(W(t))_{t \in \mathbb{R}_+}$ is a standard Wiener process.

References

 Wei, C.Z. and Winnicki, J. (1990). Estimation of the means in the branching process with immigration. Ann. Statist., 18, 1757–1773.

Workshop on Branching Processes and their Applications April 20-23, 2009

Badajoz (Spain)